
Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Inside VMProtect

Samuel Chevet

16 January 2015

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Agenda

Describe what VMProtect is
Introduce code virtualization in software protection
Methods for circumvention
VM logic

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Warning

Some assumptions are made in this presentation
Only few binaries have been studied
Mostly 64 bits target

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Plan

1 Introduction

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Software-based protection

Content of the executable’s sections is encrypted
and/or compressed
Append new code for decrypting/decompressing the
sections
Add all kinds of anti-debug, anti-vm, . . .
Executable’s entrypoint is redirected into this new
code
Execution is transferred back to the original
entrypoint after decrypt/decomp

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VMProtect

Memory protection
Allows protection of the file image in memory from
any changes
Integrity is checked before giving execution to the
original entry point

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VMProtect

Import protection
All entries used by the original binary are removed
from Import Table
Append code redirection for API call
Replace CALL DWORD PTR[@IAT] / CALL
QWORD PTR[@IAT] (Encoded on 6 bytes)
By CALL VMProtect.section (Encode on 5 bytes)

1 byte left: two variations
Before: Fake push (Stack will be readjusted during
redirection)
After: Dead code (Increment the return address
during redirection)

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VMProtect

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VMProtect

Resource protection
Encrypt resources: except icons, manifest and some
other system types
Hook:

LoadStringA/W
LdrFindResource_U
LdrAccessResource

License manager
Track your sales online and manage serial numbers
I have never worked on it

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Code virtualization

In simple packer native code is simply encrypted
and/or compressed
Disassemble native code and compile it into
proprietary bytecode
Executed in a custom interpreter at run-time
Interpreter: Fetch, Decode, Execute
Original native code has disappeared
Efficient way for anti-reverse engineering

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Code virtualization

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Code virtualization

VM must fully reproduce correctly CPU instructions
Save/Restore correctly the context of the application
before/after emulation
Care about correct result in EFLAGS|RFLAGS
Any error in the emulation is not acceptable

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VMProtect

VMProtect doesn’t decrypt the code at all
Native code is compiled into a proprietary
polymorphic bytecode
From one binary to another one, VM will not be the
same
Or even different VM inside the same binary!

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Agenda

Questions?
What is the architecture of the virtual CPU
generated?
Is the VM generated randomly?
VM bytecode obfuscated?
Difficult to recontruct original bytecode?
. . .

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Plan

2 Internal

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Virtual machine architecture

Virtualization obfuscator is Reduced Instruction Set
Computing (RISC)
One Complex Instruction Set Computing (CISC)
instruction will be translated in multiple virtualized
instructions

lea ecx, [ecx + ebx * 4 + 42]

Translated into several virtual instructions
1 Fetch ebx
2 Multiply ebx by 4
3 Fetch ecx
4 Add theses two registers
5 Add 42
6 Store result in ecx

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Virtual machine architecture

Language used by virtualization obfuscator is
Stack-Based
A stack machine implements registers with a stack
The operands of the arithmetic logic unit (ALU) are
always the top two registers of the stack
Result from the ALU is stored in the top register of
the stack
Reconstruction original native code will involve
removing stack machine feature

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Virtual machine context

Before entering into the virtualization obfuscator,
host’s registeres and flags must be saved into VM’s
context structure

VMProtect context structure
8/16 for VM-registers
2 for Relocation-Difference and
SECURITY_CONSTANT
6 for temporal usage (mostly EFLAGS|RFLAGS)
0x80 bytes free for pushed variables

sub esp, 0C0h ; 32bit
sub rsp, 140h ; 64bit

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Interesting fact

Register EDI|RDI holds VM context
Register EBP|RBP holds VM stack

Maximum value of RBP|EBP
64 bit: RDI + 0xE0, 32 bit: EDI + 0x50
If this value is reached, reserve more space on the
stack and copy VM context and pushed variables

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Interesting fact

Register EDI|RDI holds VM context
Register EBP|RBP holds VM stack

Maximum value of RBP|EBP
64 bit: RDI + 0xE0, 32 bit: EDI + 0x50
If this value is reached, reserve more space on the
stack and copy VM context and pushed variables

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VMProtect Context

VM context is accessed by EDI|RDI (via mem
location)
Index register is EDI|RDI
Index base is stored in opcode operands (can be
encrypted, see later)
From one VM to another, VM registers will not be
stored at the same index!
It makes VM context totally random

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Virtual machine implementations

VM Loop
Read the bytecode at instruction pointer
Compute opcode handler
Call the handler
Can have two variations

Down-read VM-Bytes
Up-read VM-Bytes

ESI|RSI: VM instruction pointer

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Bytecode encryption

If encryption key is present
Start of code virtualization depends on an
encryption key
VM Loop depends on this key to decrypt opcode
Handler depends on this key to decrypt operands
Key is updated during VM Loop and opcode
handler execution
Impossible to study code virtualization at a chosen
point
EBX|RBX holds the encryption key

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Logical & Arithmetic operations

Some logical and arithmetic opcode handler must
care of EFLAGS|RFLAGS
Each of them has code to store them after the
operation
; ... operation
pushfq
pop qword ptr [rbp+0]

After such handler, VM will call an handler to POP
them in VM register
GUESS: there is VM opcode pairs

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VM Block Start

Push all registers, and EFLAGS|RFLAGS
Order is totally random
Push SECURITY_CONSTANT
Push Relocation-Difference
Decrypt SECURITY_CONSTANT
Store all pushed registers, flags & others into VM
context
Index in VM context is totally random

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VM Block End

Push from VM context registers to stack
IF VM_EXIT

Pop all registers and EFLAGS|RFLAGS and return
ELSE

Encrypt SECURITY_CONSTANT
Push SECURITY_CONSTANT
Push Relocation-Difference
Jump to next VM_Block

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Internal registers

What we know
EBX|RBX: encryption key
EDI|RDI: VM context
ESI|RSI: VM instruction pointer
EBP|RBP: VM stack
EDX|RDX: arithmetic/result operation of handler
address
EAX|RAX: opcode value
R13: relocation-difference
R12: opcode handler table

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Plan

3 Analysis

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Dynamic analysis

Now that we know how it "works"
Before using symbolic execution to solve this
problem
We have to write an "intelligent code tracer"
So we will be sure our symbolic execution is not
buggy

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Dynamic analysis

Trace full execution will take too much time
Locate the VM Loop
Inject DLL that setup a HBP on execution at VM Loop
Store in DB:

VM Stack
VM Context

Make a local WebService to output result (Diff
between two states on VM_STACK, VM_CONTEXT)
Initialize VM Context with default value

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Dynamic analysis

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Dynamic analysis

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Static analysis

Now we can know the VM context at any point
(perfect for debugging)
We want to be able to reconstruct original bytecode
Automate task
Use metasm framework
(https://github.com/jjyg/metasm)

https://github.com/jjyg/metasm

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Metasm

Ruby open source framework
Assembler, disassembler, compiler, linker, . . .
Description of the semantics for each instruction
Allowing us to compute the semantic of a set of
instructions
code_binding

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Metasm

code_binding example
rax => (byte ptr [rsi-1]&0ffffff00h)|((((((byte ptr [rsi-1]>>1)&7fffff80h)|(((((byte ptr [rsi-1]>>1)&7fffff80h)|((((byte ptr [rsi-1]&0ffffffffh)-(rbx&0ffh))>>1)&7fh)^7fffffffh)&7fh))^30h)&7fh)|((((byte ptr [rsi-1]&0ffffffffh)-(rbx&0ffh))<<7)&80h))
rdx => qword ptr [rbp]&0ffffffffffffffffh
rbx => (rbx&0ffffffffffffff00h)|((rbx-((((((byte ptr [rsi-1]>>1)&7fffff80h)|(((((byte ptr [rsi-1]>>1)&7fffff80h)|((((byte ptr [rsi-1]&0ffffffffh)-(rbx&0ffh))>>1)&7fh)^7fffffffh)&7fh))^30h)&7fh)|((((byte ptr [rsi-1]&0ffffffffh)-(rbx&0ffh))<<7)&80h)))&0ffh)
rbp => (rbp+8)&0ffffffffffffffffh
rsi => (rsi-1)&0ffffffffffffffffh

Just need to replace (inject) inside expression the
known value, so expression can be reduced

RSI: bytecode_ptr
RBX: encryption key
RBP: VM_stack

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VM’s symbolic internal

VM symbolic is huge
All VM registers must implem each size of operand
(byte, word, dword, qword)
VM context contains lot of internals registers

vm_symbolism = {
:rax => :opcode,
:rbx => :vmkey,
:rsi => :bytecode_ptr,
:rbp => :vm_stack,
Indirection[[:vm_stack], 8, nil] => :QWORD_OP_1,
...
Indirection[[:vm_stack, :+, 0x8], 8, nil] => :QWORD_OP_02,
Indirection[[:rdi], 8, nil] => :qword_vm_r0,
Indirection[[:rdi, :+, 0x8], 1, nil] => :byte_vm_r0,
...
Indirection[[:rdi, :+, 0x8], 8, nil] => :qword_vm_r1,
...
Indirection[[:rdi, :+, 0x18], 8, nil] => :qword_vm_r3,
...

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Static analysis

Setup start context of the VM
Disassemble and compute semantic of the current
opcode handler
Compute next state with solved semantics
Loop if not VM_EXIT

Problem
We need to know the end address for the
code_binding
Check list of basic block, if one basic block match the
check on maximum value of VM_STACK (EBP) =>
STOP ADDR
If not we are back to the VM_LOOP or RETN
(VM_EXIT)

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Static analysis

Setup start context of the VM
Disassemble and compute semantic of the current
opcode handler
Compute next state with solved semantics
Loop if not VM_EXIT

Problem
We need to know the end address for the
code_binding
Check list of basic block, if one basic block match the
check on maximum value of VM_STACK (EBP) =>
STOP ADDR
If not we are back to the VM_LOOP or RETN
(VM_EXIT)

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Static analysis

VM Context requirement at start
Bytecode pointer start address: arg_00 of
VM_ENTRY (constant unfolding can be applied on
it)
Key stored in EBX|RBX necessary to decrypt bytcode
is equal to original PE ImageBase + RVA of bytecode
pointer
Opcode handler table (normally stored in r12)

With our dynamic analysis we know those 3
parameters at any point!

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Static analysis

Remove native register / not interesting VM register
from solved binding

Keep only operation on EDI|RDI or VM_STACK

Thanks to the RISC architecture and stack-based
language
Check if VM_STACK has been incremented or
decremented

[+] solved binding
qword ptr [rsp] => 140087e62h
dword ptr [rsp-8] => dword ptr [rsp-8]+0e4018d37h
QWORD_IMM => 0ffffffffe4018d37h # Indirection[[:vm_stack, :+, -0x8], 8, nil] => :QWORD_IMM
virt_rax => 0ffffffffe4018d37h
vm_stack => (vm_stack-8)&0ffffffffffffffffh
bytecode_ptr => 140087e01h

########### After Remove register
QWORD_IMM => 0ffffffffe4018d37h
vm_stack => (vm_stack-8)&0ffffffffffffffffh

[DISAS]: PUSH 0XFFFFFFFFE4018D37

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Static analysis

With that we can start to disassemble the whole
bytecode VM
Check "Pratical Reverse Engineering" (Chapter 5) for
complete example on how to use metasm

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Plan

4 VM Logic

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VM Logic

Reminder
Langage used is stack-based
Next opcode after logical or arithmetic operation will
store EFLAGS|RFLAGS inside VM context

For all the following slides we will use the following
syntax:

QWORD_OP_1: [RBP + 0] ; operand 01
QWORD_OP_2: [RBP + 8] ; operand 02

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Disassembler

...
[DISAS]: PUSH 0xC2666C77B83B1153
[DISAS]: PUSH vm_r6
[DISAS]: PUSH 0x000000014014A631
[DISAS]: ADD QWORD_OP_1, QWORD_OP_2
[DISAS]: POP vm_r2
[DISAS]: MOV QWORD_OP_1, [QWORD_OP_1]
[DISAS]: ADD QWORD_OP_1, QWORD_OP_2
[DISAS]: POP vm_r14
...

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Optimization

We need to remove stack machine "feature"
Replace push ; pop by assignement statement
Track stack pointer
Check if the destination size match!

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VM Logic

All push, pop with all different size & mem deref
Add
Div, Idiv
Mul
Rcl, Rcr
Shl, Shr
Shld, Shrd

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VM Logic

Inside VM handlers, operation like
AND|SUB|OR|NOT seems not supported
In fact all those operations are managed by one
handler "NOR" logical gate:

Native semantic of this handler
NOT QWORD_OP_1
NOT QWORD_OP_2
AND QWORD_OP_1, QWORD_OP_2
MOV QWORD_OP_2, QWORD_OP_1
MOV QWORD_OP_1, RFLAGS

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VM Logic

Lot of logical instruction will use this "NOR" logical
gate handler:

NOT(OP_00) = NOR(OP_00, OP_00)
AND(OP_00, OP_01) = NOR(NOT(OP_00),
NOT(OP_01))
XOR(OP_00, OP_01) = NOR(NOR(OP_00, OP_01),
AND(OP_00, OP_01))
SUB(OP_00, OP_01) = NOR(ADD(OP_01,
NOT(OP_01)))
. . .

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VM Logic

VM_ADC(OP_00, OP_01) = VM_ADD(OP_00,
(OP_01 + CARRY))
VM_SUB(OP_00, OP_01) = VM_NOT(VM_ADD(B,
VM_NOT(A)))
VM_CMP = VM_SUB
VM_NEG(OP_00) = VM_SUB(0, OP_00)
. . .
Original bytecode is sometimes converted to more
than 50 VM opcodes . . .

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VM block entry

VM block entry
POP REG ; relocation-difference
PUSH IMMEDIATE
ADD QWORD_OP_1, QWORD_OP_2 ; compute security constant
POP REG ; flags
POP REG ; pop result
...
; POP ALL HOST REGISTER (SAVE CONTEXT)
...

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VM conditional jump

VM jcc
1 Push two vm_offset
2 Push VM_stack
3 Convert EFLAGS|RFLAGS for adjustement 0 or 4|8
4 Adjust pointer from result (ADD operation)
5 Prepare to load next vm block from [VM_STACK]

We will have to reconstruct JCC correctly

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VM CRC

VM CRC
There is a special opcode for making CRC
Op_01: Mem pointer, Op_02: Size
Check VM integrity, executable integrity
Collision :)

rcx = rax = 0;
for (i = 0; i < Size; i++) {

rcx = rax
rcx = rcx >> 0x19
rax = (rax << 0x07) | rcx
rax = (rax & 0xFFFFFF00) | (rax & 0xFF) ^ buf[i]

}

Compared with SECURITY_CONSTANT
Found the same checksum in all samples

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

VM CPUID

VM CPUID
There is a special opcode for making CPUID
instruction
Op_01: Value
Save 0x0C on VM_STACK (EBP) for storing eax, ebx,
ecx, edx

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Listing opcodes

Try to compute set of all list of opcodes to reconstruct
the correct original one
Really long task, I didn’t have finish it at this time

1 bored
2 need more samples

The mapping between the set of VM bytecode and
original one will work directly on all binaries

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Plan

5 Conclusion

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Conclusion

Always the same architecture: RISC + stack machine
VirtualMachine are generated in a random way
Difficult to make a static disassembler, prefer to use
symbolic execution
Before having the question: no toolz is going to be
released
VMProtect is a cool challenge (start by 64 bits binary,
"obfuscation" is not difficult)

Inside VMProtect

Introduction

Internal

Analysis

VM Logic

Conclusion

Samuel Chevet

Questions ?

Thank you for your attention

	Introduction
	Internal
	Analysis
	VM Logic
	Conclusion

