Memory Forensics: A Volatility Primer

Mariano Graziano

Security Day - Lille1 University January 2015 - Lille, France

whoami

- Ph.D student at Eurecom (France)
- Msc from Politecnico di Torino (Italy)
- Main topics: Malware analysis, Memory forensics
- "Wasted" the best years on IRC
- Interests: Exploitation techniques, *Nix Kernel hacking, CTFs

Outline

- Memory forensics
- Volatility
 - Windows
 - Linux
- Virtualization Support
 - Hypervisor Structures
 - Virtual Machines Analysis
- Future Work

Memory Forensics

Process of capturing a copy of the system memory (RAM) to extract a number of evidences that are useful for an investigation

Steps:

- Take the memory dump
- Locate raw data structures
- Extract information (encryption keys, passwords, etc)

New field (~2005) and very active research area

Memory is smaller than hard-drives Every attack has a memory footprint Advanced samples reside only in memory

Cons

OS diversity:

- Data structures
- Semantic Gap

Memory changes:
 Content authenticity

Acquisition paradox

Outline

- Memory forensics
 - Volatility
 - Windows
 - Linux
 - Virtualization Support
 - Hypervisor Structures
 - Virtual Machines Analysis
 - Future Work

Memory Analysis

- Retrieve specific information (processes, IP addresses, etc)
- Fill the Semantic Gap
- Require OS internals knowledge (the more, the better)

Existing Frameworks

Don't reinvent the wheel!

- Volatility (Volatility Foundation)
- Memoryze (Mandiant)Rekall (Google)

Framework Internals

They all share the same concepts

- Step 1: Locating structures
 - Fixed offsets
 - Data structures walking
 - Linear scanning

Remember the OS diversity

Interesting Structures

Depend on the OS

Define your "interest"

Processes?

• EPROCESS, KPROCESS, PEB, etc

task_struct, mm_struct, etc

_EPROCESS

EPROCESS:

.

'Peb' : 0x1a8, '_<mark>PEB</mark>', 'PrefetchTrace' : 0x1ac, '_EX_FAST_REF',

> '_KPROCESS' 'Header' : 0x0, '_DISPATCHER_HEADER',

'**DirectoryTableBase**' : 0x18, 'LdtDescriptor' : 0x1c, '_KGDTENTRY',

Interesting Process Information

EPROCESS:

- Creation and Exit Time
- PID && PPID
- Pointer to the handler table
- VAD etc
- PEB:
 - Pointer to the Image Base Address
 - Pointer to the DLLs loaded
 - Heap Size etc

Volatility

- Open Source Memory analysis framework born in 2007
- Python
- Current version 2.4 (August 2014)
- http://www.volatilityfoundation.org/#!24/c12wa
- FATKit Evolution (by Petroni and Walters, DFIR Journal 2006)

Volatility 2.4

- Windows (XP, Vista, 7, 2003, 2008, 8, 8.1)
- Linux 32 and 64 bit
- MacOSX 10.5 to 10.8.3
- Android
- It works with crash dumps, hibernation files,
 VM snapshots, Lime format and plain raw dumps.

Volatility Plugins

- Volatility is highly modular
- Easy to add new features/supports
- ~160 plugins for ~25 profiles
- Several plugins for malware analysis
- python vol.py --info

Bootstrap the Analysis

Linux: /boot/System.map-\$(uname -r)

Windows:

• Rekall:

- Scan the memory to find RSDS signature
- Extract GUID and PDB filename
- Query the Microsoft public symbols server
- From the PDB file extracts of many symbols

Volatility:

- Scan the memory to find the KDBG to locate PsActiveProcessHead (Prone to Anti-forensics)
- Drawback: Locate KDBG:
 - XP/Vista via KPCR
 - Win8 encoded

Processes

Pslist: Walk the EPROCESS objects list
Pstree: Like pslist but it prints out the tree
Psscan: Scan the memory for the EPROCESS signature (find hidden and terminated processes as well)

Address Translation

Do you remember the Semantic Gap?

 All the pointers we have found are Virtual Addresses and we have a physical memory dump

We need to emulate the MMU work

 Volatility solution: Address Spaces (IA-32, IA-32 PAE, IA-32e, ARM, etc)

Address Translation IA-32

Outline

- Memory forensics
- Volatility
 - Windows
 - Linux
- Virtualization Support
 - Hypervisor Structures
 - Virtual Machines Analysis
- Future Work

The problem

- Virtualization is everywhere
- No support to analyze:
 - Virtual Machines
 - Hypervisors
 - Nested configurations

The solution

Actaeon core:

- VMCS layout extractor
- Hyperls
- Virtual Machine Introspection patch

Warning

Actaeon IS NOT:

- A tool to dump the physical memory
- A real time detector for malicious hypervisors
- A malware detector

VMCS

- Virtual Machine Control Structure
- Intel VMX structure to handle VMX transistions
- Memory structure containing information for keeping the state of the system
- Fields listed in the Intel Manual but the layout is implementation specific

VMCS RE

- Simple reverse algorithm based on an Open Source hypervisor (HyperDbg):
 - VMCS fields are associated with a 32 bits value (encoding) that is used by VMREAD/VMWRITE instructions
 - The position is derived from the encoding in the processor microcode so we filled the VMCS region with 16 bit incremental numbers
 - We rebuilt the position of every field in the VMCS by associating the encoding value to the generated value

Hypervisor Discovery

Four heuristics on VMCS fields:

- REVISION_ID: Determine the VMCS memory layout. Must match the value of MSR 0x480 (IA32 VMX_BASIC_MSR)
- VMX_ABORT_INDICATOR: Must be zero. It is the second entry of the VMCS area.
- VMCS_LINK_POINTER: Two consecutive words. They must be 0xFFFFFFF
- HOST_CR4: The 13th bit indicates if VMX support is enabled or not.

EPT

- Extended Page Tables
- Provide memory isolation among virtual machines
- Marked in a field in the VMCS (Secondary Based Execution Control)
- Provide an additional layer of translation (remember MMU?) transparent and in hardware
- Translation from a GPA to an HPA
- Translation has four stages (PML4, PDPT, PD, PT)

- Virtual Machine Introspection via EPT
- Locate VMCS and extract the EPT pointer
- Simulate EPT translation
- Patch the Volatility core to add the EPT support

Outline

- Memory forensics
 - Volatility
 - Windows
 - Linux
- Virtualization Support
 - Hypervisor Structures
 - Virtual Machines Analysis
- Future Work

Integration in Volatility

- x86-64 support
- Full Hyper-V support
- More testing for nested environments
- VMCS Shadowing support
- Find reliable solution to dump type-1 hypervisors

Memory Forensics

- More research effort to enhance/ease malware analysis
- More communication among researchers
- Leverage memory forensics
- Lack of support for:
 - Net/Open/Free/BSD
 - Solaris/SPARC
 - Emulators (Qemu/Bochs/etc)
 - Containers (LXC/OpenVZ/Docker/etc)

Contact

- Mail: graziano <at> eurecom <dot> fr
- Twitter: @emd3l
- IRC: emdel/emd3l (Freenode/Efnet/W3challs)
- http://www.s3.eurecom.fr/tools/actaeon

We are looking for motivated and skilled Ph.D students. Feel free to contact me.