
Memory Forensics:
A Volatility Primer

Mariano Graziano

Security Day - Lille1 University
January 2015 - Lille, France

Y
R
O
M
E
M

whoami
 Ph.D student at Eurecom (France)
 Msc from Politecnico di Torino (Italy)
 Main topics: Malware analysis, Memory
forensics

 “Wasted” the best years on IRC
 Interests: Exploitation techniques, *Nix Kernel
hacking, CTFs

Y
R
O
M
E
M

Outline
 Memory forensics
 Volatility

 Windows
 Linux

 Virtualization Support
 Hypervisor Structures
 Virtual Machines Analysis

 Future Work

Y
R
O
M
E
M

Memory Forensics
 Process of capturing a copy of the system
memory (RAM) to extract a number of
evidences that are useful for an investigation

 Steps:
 Take the memory dump
 Locate raw data structures
 Extract information (encryption keys, passwords, etc)

 New field (~2005) and very active research area

Y
R
O
M
E
M

Pros

 Memory is smaller than hard-drives
 Every attack has a memory footprint
 Advanced samples reside only in memory

Y
R
O
M
E
M

Cons

 OS diversity:
 Data structures
 Semantic Gap

 Memory changes:
● Content authenticity
● Acquisition paradox

Y
R
O
M
E
M

Outline
 Memory forensics
 Volatility

 Windows
 Linux

 Virtualization Support
 Hypervisor Structures
 Virtual Machines Analysis

 Future Work

Y
R
O
M
E
M

Memory Analysis

 Retrieve specific information (processes, IP
addresses, etc)

 Fill the Semantic Gap
 Require OS internals knowledge (the more,
the better)

Y
R
O
M
E
M

Existing Frameworks

Don't reinvent the wheel!

 Volatility (Volatility Foundation)
 Memoryze (Mandiant)
 Rekall (Google)

Y
R
O
M
E
M

Framework Internals
 They all share the same concepts
 Step 1: Locating structures

 Fixed offsets
 Data structures walking
 Linear scanning

 Remember the OS diversity

Y
R
O
M
E
M

Interesting Structures

 Depend on the OS
 Define your “interest”
 Processes?

 EPROCESS, KPROCESS, PEB, etc
 task_struct, mm_struct, etc

Y
R
O
M
E
M

_EPROCESS

_EPROCESS:
 'Pcb': 0x0, '_KPROCESS',

 'ProcessLock' : 0x98, '_EX_PUSH_LOCK',

 'ActiveProcessLinks' : 0xb8,

 …....................

 'Peb' : 0x1a8, '_PEB',

 'PrefetchTrace' : 0x1ac, '_EX_FAST_REF',

 ….................

Flink && Blink

'_KPROCESS'
'Header' : 0x0, '_DISPATCHER_HEADER',
…............
'DirectoryTableBase' : 0x18,
'LdtDescriptor' : 0x1c, '_KGDTENTRY',
…............

Y
R
O
M
E
M

Interesting Process
Information

 EPROCESS:
 Creation and Exit Time
 PID && PPID
 Pointer to the handler table
 VAD etc

 PEB:
 Pointer to the Image Base Address
 Pointer to the DLLs loaded
 Heap Size etc

Y
R
O
M
E
M

Volatility
 Open Source Memory analysis framework
born in 2007

 Python
 Current version 2.4 (August 2014)
 http://www.volatilityfoundation.org/#!24/c12wa
 FATKit Evolution (by Petroni and Walters,
DFIR Journal 2006)

Y
R
O
M
E
M

http://www.volatilityfoundation.org/#!24/c12wa

Volatility 2.4
 Windows (XP, Vista, 7, 2003, 2008, 8, 8.1)
 Linux 32 and 64 bit
 MacOSX 10.5 to 10.8.3
 Android
 It works with crash dumps, hibernation files,
VM snapshots, Lime format and plain raw
dumps.

Y
R
O
M
E
M

Volatility Plugins

 Volatility is highly modular
 Easy to add new features/supports
 ~160 plugins for ~25 profiles
 Several plugins for malware analysis
 python vol.py --info

Y
R
O
M
E
M

 Bootstrap the Analysis
 Linux: /boot/System.map-$(uname -r)
 Windows:

 Rekall:
 Scan the memory to find RSDS signature
 Extract GUID and PDB filename
 Query the Microsoft public symbols server
 From the PDB file extracts of many symbols

 Volatility:
 Scan the memory to find the KDBG to locate
PsActiveProcessHead (Prone to Anti-forensics)

 Drawback: Locate KDBG:
 XP/Vista via KPCR
 Win8 encoded

Y
R
O
M
E
M

Processes

 Pslist: Walk the EPROCESS objects list
 Pstree: Like pslist but it prints out the tree
 Psscan: Scan the memory for the
EPROCESS signature (find hidden and
terminated processes as well)

Y
R
O
M
E
M

Address Translation

 Do you remember the Semantic Gap?
 All the pointers we have found are Virtual
Addresses and we have a physical memory
dump

 We need to emulate the MMU work
 Volatility solution: Address Spaces

(IA-32, IA-32 PAE, IA-32e, ARM, etc)

Y
R
O
M
E
M

Address Translation
IA-32

Y
R
O
M
E
M

Outline
 Memory forensics
 Volatility

 Windows
 Linux

 Virtualization Support
 Hypervisor Structures
 Virtual Machines Analysis

 Future Work

Y
R
O
M
E
M

The problem

 Virtualization is everywhere
 No support to analyze:

 Virtual Machines
 Hypervisors
 Nested configurations

Y
R
O
M
E
M

The solution

 Actaeon core:
 VMCS layout extractor
 Hyperls
 Virtual Machine Introspection patch

Y
R
O
M
E
M

Warning

 Actaeon IS NOT:
 A tool to dump the physical memory
 A real time detector for malicious hypervisors
 A malware detector

Y
R
O
M
E
M

VMCS
 Virtual Machine Control Structure
 Intel VMX structure to handle VMX
transistions

 Memory structure containing information
for keeping the state of the system

 Fields listed in the Intel Manual but the
layout is implementation specific

Y
R
O
M
E
M

VMCS RE
 Simple reverse algorithm based on an Open
Source hypervisor (HyperDbg):
 VMCS fields are associated with a 32 bits value

(encoding) that is used by VMREAD/VMWRITE
instructions

 The position is derived from the encoding in the
processor microcode so we filled the VMCS
region with 16 bit incremental numbers

 We rebuilt the position of every field in the VMCS
by associating the encoding value to the
generated value

Y
R
O
M
E
M

Hypervisor Discovery
 Four heuristics on VMCS fields:

 REVISION_ID: Determine the VMCS memory
layout. Must match the value of MSR 0x480
(IA32 VMX_BASIC_MSR)

 VMX_ABORT_INDICATOR: Must be zero. It is the
second entry of the VMCS area.

 VMCS_LINK_POINTER: Two consecutive words.
They must be 0xFFFFFFFF

 HOST_CR4: The 13th bit indicates if VMX support
is enabled or not.

Y
R
O
M
E
M

EPT
 Extended Page Tables
 Provide memory isolation among virtual
machines

 Marked in a field in the VMCS (Secondary
Based Execution Control)

 Provide an additional layer of translation
(remember MMU?) transparent and in
hardware

 Translation from a GPA to an HPA
 Translation has four stages (PML4, PDPT,
PD, PT)

Y
R
O
M
E
M

VMI

 Virtual Machine Introspection via EPT
 Locate VMCS and extract the EPT pointer
 Simulate EPT translation
 Patch the Volatility core to add the EPT
support

Y
R
O
M
E
M

Outline
 Memory forensics
 Volatility

 Windows
 Linux

 Virtualization Support
 Hypervisor Structures
 Virtual Machines Analysis

 Future Work

Y
R
O
M
E
M

Actaeon

 Integration in Volatility
 x86-64 support
 Full Hyper-V support
 More testing for nested environments
 VMCS Shadowing support
 Find reliable solution to dump type-1
hypervisors

Y
R
O
M
E
M

Memory Forensics
 More research effort to enhance/ease
malware analysis

 More communication among researchers
 Leverage memory forensics
 Lack of support for:

 Net/Open/Free/BSD
 Solaris/SPARC
 Emulators (Qemu/Bochs/etc)
 Containers (LXC/OpenVZ/Docker/etc)

Y
R
O
M
E
M

Contact

 Mail: graziano <at> eurecom <dot> fr
 Twitter: @emd3l
 IRC: emdel/emd3l (Freenode/Efnet/W3challs)
 http://www.s3.eurecom.fr/tools/actaeon

We are looking for motivated and
skilled Ph.D students. Feel free
to contact me.

Y
R
O
M
E
M

http://www.s3.eurecom.fr/tools/actaeon

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

