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whoami
 Ph.D student at Eurecom (France)
 Msc from Politecnico di Torino (Italy)
 Main topics: Malware analysis, Memory 
forensics

 “Wasted” the best years on IRC
 Interests: Exploitation techniques, *Nix Kernel 
hacking, CTFs
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Memory Forensics
 Process of capturing a copy of the system 
memory (RAM) to extract a number of 
evidences that are useful for an investigation

 Steps:
 Take the memory dump
 Locate raw data structures
 Extract information (encryption keys, passwords, etc)

 New field (~2005) and very active research area
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Pros

 Memory is smaller than hard-drives
 Every attack has a memory footprint
 Advanced samples reside only in memory
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Cons

 OS diversity:
 Data structures
 Semantic Gap

 Memory changes:
● Content authenticity
● Acquisition paradox

Y
R
O
M
E
M



Outline
 Memory forensics
 Volatility

 Windows
 Linux

 Virtualization Support
 Hypervisor Structures
 Virtual Machines Analysis

 Future Work

Y
R
O
M
E
M



Memory Analysis

 Retrieve specific information (processes, IP 
addresses, etc)

 Fill the Semantic Gap
 Require OS internals knowledge (the more, 
the better)
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Existing Frameworks

Don't reinvent the wheel!

 Volatility (Volatility Foundation)
 Memoryze (Mandiant)
 Rekall (Google)
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Framework Internals
 They all share the same concepts
 Step 1: Locating structures

 Fixed offsets
 Data structures walking
 Linear scanning

 Remember the OS diversity
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Interesting Structures

 Depend on the OS
 Define your “interest”
 Processes? 

 EPROCESS, KPROCESS, PEB, etc
 task_struct, mm_struct, etc
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_EPROCESS

_EPROCESS:
   'Pcb': 0x0, '_KPROCESS',

    'ProcessLock' : 0x98, '_EX_PUSH_LOCK',

    'ActiveProcessLinks' : 0xb8,   

     ….................... 

    'Peb' : 0x1a8, '_PEB',  

    'PrefetchTrace' : 0x1ac, '_EX_FAST_REF',

    ….................

Flink && Blink

'_KPROCESS'
'Header' : 0x0, '_DISPATCHER_HEADER',
…............
'DirectoryTableBase' : 0x18,
'LdtDescriptor' : 0x1c, '_KGDTENTRY',
…............
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Interesting Process 
Information

 EPROCESS:
 Creation and Exit Time
 PID && PPID
 Pointer to the handler table
 VAD etc

 PEB:
 Pointer to the Image Base Address
 Pointer to the DLLs loaded
 Heap Size etc 
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Volatility
 Open Source Memory analysis framework 
born in 2007

 Python
 Current version 2.4 (August 2014)
 http://www.volatilityfoundation.org/#!24/c12wa
 FATKit Evolution (by Petroni and Walters, 
DFIR Journal 2006)
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Volatility 2.4
 Windows (XP, Vista, 7, 2003, 2008, 8, 8.1)
 Linux 32 and 64 bit
 MacOSX 10.5 to 10.8.3
 Android
 It works with crash dumps, hibernation files,
VM snapshots, Lime format and plain raw
dumps.
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Volatility Plugins

 Volatility is highly modular
 Easy to add new features/supports
 ~160 plugins for ~25 profiles
 Several plugins for malware analysis
 python vol.py --info 
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 Bootstrap the Analysis
 Linux: /boot/System.map-$(uname -r)
 Windows:

 Rekall:
 Scan the memory to find RSDS signature 
 Extract GUID and PDB filename
 Query the Microsoft public symbols server
 From the PDB file extracts of many symbols

 Volatility:
 Scan the memory to find the KDBG to locate
PsActiveProcessHead (Prone to Anti-forensics)

 Drawback: Locate KDBG:
 XP/Vista via KPCR
 Win8 encoded
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Processes

 Pslist: Walk the EPROCESS objects list
 Pstree: Like pslist but it prints out the tree
 Psscan: Scan the memory for the 
EPROCESS signature (find hidden and 
terminated processes as well) 
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Address Translation

 Do you remember the Semantic Gap?
 All the pointers we have found are Virtual 
Addresses and we have a physical memory 
dump

 We need to emulate the MMU work
 Volatility solution: Address Spaces

(IA-32, IA-32 PAE, IA-32e, ARM, etc)
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Address Translation 
IA-32
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The problem

 Virtualization is everywhere
 No support to analyze:

 Virtual Machines
 Hypervisors 
 Nested configurations
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The solution

 Actaeon core:
 VMCS layout extractor
 Hyperls
 Virtual Machine Introspection patch
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Warning

 Actaeon IS NOT:
 A tool to dump the physical memory
 A real time detector for malicious hypervisors
 A malware detector
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VMCS
 Virtual Machine Control Structure
 Intel VMX structure to handle VMX 
transistions

 Memory structure containing information 
for keeping the state of the system

 Fields listed in the Intel Manual but the 
layout is implementation specific
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VMCS RE
 Simple reverse algorithm based on an Open 
Source hypervisor (HyperDbg):
 VMCS fields are associated with a 32 bits value 

(encoding) that is used by VMREAD/VMWRITE 
instructions

 The position is derived from the encoding in the 
processor microcode so we filled the VMCS 
region with 16 bit incremental numbers

 We rebuilt the position of every field in the VMCS 
by associating the encoding value to the 
generated value
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Hypervisor Discovery
 Four heuristics on VMCS fields:

 REVISION_ID: Determine the VMCS memory 
layout. Must match the value of MSR 0x480 
(IA32 VMX_BASIC_MSR) 

 VMX_ABORT_INDICATOR: Must be zero. It is the 
second entry of the VMCS area.

 VMCS_LINK_POINTER: Two consecutive words. 
They must be 0xFFFFFFFF

 HOST_CR4: The 13th bit indicates if VMX support 
is enabled or not.
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EPT
 Extended Page Tables
 Provide memory isolation among virtual 
machines

 Marked in a field in the VMCS (Secondary 
Based Execution Control)

 Provide an additional layer of translation 
(remember MMU?) transparent and in 
hardware

 Translation from a GPA to an HPA
 Translation has four stages (PML4, PDPT, 
PD, PT)
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VMI

 Virtual Machine Introspection via EPT
 Locate VMCS and extract the EPT pointer
 Simulate EPT translation 
 Patch the Volatility core to add the EPT 
support
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Actaeon 

 Integration in Volatility
 x86-64 support
 Full Hyper-V support 
 More testing for nested environments
 VMCS Shadowing support
 Find reliable solution to dump type-1 
hypervisors
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Memory Forensics
 More research effort to enhance/ease 
malware analysis

 More communication among researchers
 Leverage memory forensics
 Lack of support for:

 Net/Open/Free/BSD
 Solaris/SPARC
 Emulators (Qemu/Bochs/etc)
 Containers (LXC/OpenVZ/Docker/etc)
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Contact

 Mail: graziano <at> eurecom <dot> fr
 Twitter: @emd3l
 IRC: emdel/emd3l (Freenode/Efnet/W3challs)
 http://www.s3.eurecom.fr/tools/actaeon

We are looking for motivated and 
skilled Ph.D students. Feel free 
to contact me.
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