

Design and Circularity of Data Centre Equipment

Deborah Andrews

Professor of Design for Sustainability and Circularly London South Bank University

Academic lead – CEDaCI

Wuppertal Techbuyer

Connectivity – 55% global population / data traffic = 4.2 trillion gigabytes / yr

Techbuver

Free ICT Europe

Data Centres

7.2m globally / concentration in EU - UK, Germany, France & Netherlands 2010-2020 – \$100bn investment in sector

Free ICT Europe

DC growth – 2018 baseline: 300% in EU by 2025 / 500% global 2030

Speed of sectoral development & emphasis on service provision.... Linear model of consumption

operational[®] Intelligence

CEDaCI

- unique, interdisciplinary, multi-output initiative
- uses whole-life thinking

Circular Economy for the Data Centre Industry

- Reactive
 - Pilot B product life extension
 - Pilot C recycling / CRM reclamation
- Proactive –

• Pilot A - Design and manufacture

Wuppertal Institut

Methodology

LSB

Operational impact – ~75% over life in UK / 2015

Embodied impact - building life 60 years 15% of embodied environmental impact derives from building and facilities

EE equipment is regularly refreshed – M&E - 20 years Switches, routers, batteries - 10 years servers - 1-5 years

85% derives from IT equipment

20 million servers etc = 0.56 million tonnes materials

Wuppertal Institut Techbuyer

Free ICT Europ

Servers Data Centre Equipment Highest embodied impact

operational® SDM COO Wuppertal Institut

Compass

Welcome to Compass

Username
Exampleuser
Password

Login
or
Sign up

Forgot your password?

Ecodesign Evaluator consolidates EU Ecodesign Criteria in one place – easy for designers to follow

Tool includes Ecodesign guidelines from EU Circular Economic Action Plan and CEDaCl

operational[®]

Tool Options

Welcome to the Circular Data Centre Compass (CDCC). Choose from the following tool options: Compare, Ecodesign Evaluator and End-of-Life to assess your Data Centre equipment at various stages of its life.

Wuppertal

All options were developed in-line with **the EU Circular Economy Action Plan 2020** and other eco-design directives and regulations as well as the **empirical data collected by CEDaCI** from the material breakdown and assessment of various server models.

Techbuver

CEDaCI home

Compass

My account Log out

ree ICT Europe

Compare Evaluator

End of life

CEDaCI Eco-design Evaluator

created to evaluate the degree of excellence and conformity with the recommended guidelines from:

- 1. Lot 9 2009/125/EC DIRECTIVE
- 2. COMMISSION REGULATION (EU) 2019/424
- 3. COMMISSION REGULATION (EU) No 617/2013
- 4. EU Circular Economy Action Plan

Includes supplementary Eco-design Guidelines from EU Circular Economic Action Plan and CEDaCI

Circular Economy for the Data Centre Industry

Design must meet criteria in 10 key areas

- 1. Minimum PSU efficiency & Power Factor requirements
- 2. Security data sanitisation / shredding
- 3. Software & Firmware
- 4. Product specific information availability from market entry point & after end-of-sale
- 5. Availability of instruction manuals
- 6. Product Disassembly

IL 1882

- 7. Design & Manufacture
- 8. Chemical Content & Recycling
- 9. Resource Tracking & Tracing
- 10.CE & Environmental Considerations

			e with EU Circular Economy . all the relevant information and values			/Model
r EU Reg.	Categories		irements	CEDaCI	G10	613
2	cutegories	nequ	% of rated load	CEDUCI		/alues
2			at 10% Single Output	90%	90%	90%
2	2		at 20% Multi Output	90%	90%	90%
5	Ē.	Minimum PSU Efficiency (from January	at 20% Single Output	94%	94%	94%
8	<u>.</u>	2023)	at 50% Multi Output	94%	94%	94%
<u>~</u>	Power Specifications	,	at 50% Single Output	96%	96%	96%
2	, s		at 100% Multi Output	91%	91%	91%
2	5		at 100% Single Output	91%	91%	91%
2	6		at 50% Multi Output	0.95	0.95	0.95
	-	Minimum Power Factor Output	at 50% Single Output	0.95	0.95	0.95
ปีดี		Quarter & Course have a discussion of the scheme	at 50% Single Output			
2, 8		Overall Score based on the above		18	18	18
n E		Secure Data Sanitisation	General Availability	Y	Y	Y
pubc	Security	Availability of Integral Secure Data Deletion Tool at the End of Sale	Minimum 8 years	>8	8	8
e Pro	Sec	Availability of Security Updates at the End of Sale	Minimum 8 years	>8	8	8
≤ ₩		Overall Score based on the above		9	5	5
3 2	2	Availability of the Free Latest Firmware		-		_
2 2	2	Updates from the market entry point	Minimum for 2 years	>2	2	2
5.2	<u> </u>	Availability of Free Firmware Updates at		-	-	-
58		the End of Sale	Minimum 8 years	>8	8	8
gulati	Software & Firmware	Open Source Firmware/Software option for the updates/upgrades of the obsolete hardware	General Availability	Y	Unknown	Unknown
2	8	Overall Score based on the above		12	4	4
2009/125/EC DIRECTIVE, COMMISSION REGULATION (EU) NOE1//2015, COMMISSION REGULATIO (EU) 2019/424; Regulation for Storage Products (Lot9)	of Product Specific Info from the point and for Munimum of 8 Years from the end of sale	Availability of Product Specific Info at the End of Sale. (Product Type, OEM Details, Model Number, PSU Efficiency, Power Factor at 50%, ASHRAE Class, Data Sanitisation Instructions/tool/standards). (minimum 8 years)	Minimum 8 years	>8	8	8
	ct Specific In 1 for Munim e end of sale	Availability of Recycler Specific Info at the End of Sale (minimum 8 years)	Minimum 8 years	>8	8	8
		Availability of Recycler Specific Info from the market entry point <u>for indicative</u> weight range (less than 5 g, between 5 g and 25 g, above 25 g) at	Cobalt Batteries	Y	Y	Y
	Ava ila bility na rket e ntry	component level, of the following CRM	Neodymium in HDDs	Y	Y	Y
	Ave	Digitalisation of product information	Tagging, Digital ID etc.	Y	Y	Y
	-	Overall Score based on the above		11	7	7
mber 2018	Availability of Instruction Manuals	Instructions on the disassembly operations for each necessary operation and component. (Type of Operation, type and number of fastening technique(s) to be unlocked, tool(s) required).	General Availability	Y	Y	Y
	5 = 2	Repair Manuals	General Availability	Y	Y	Y

Wuppertal Institut Techbuyer 🥥

Circular Economy for the Data Centre Industry

Design must meet criteria in 10 key areas

- 1. Minimum PSU efficiency & Power Factor requirements
- 2. Security data sanitisation / shredding
- 3. Software & Firmware
- 4. Product specific information availability from market entry point & after end-of-sale
- 5. Availability of instruction manuals
- 6. Product Disassembly

- 7. Design & Manufacture
- 8. Chemical Content & Recycling
- 9. Resource Tracking & Tracing
- 10.CE & Environmental Considerations

	E		e with EU Circular Economy	Action Plan-		
			all the relevant information and values		Design/	
EU Reg.	Categories	Requ	irements	CEDaCI	G10	G13
6			% of rated load		True V	
E			at 10% Single Output	90%	90%	90%
2	8		at 20% Multi Output	90%	90%	90%
	Power Specifications	Minimum PSU Efficiency (from January	at 20% Single Output	94%	94%	94%
뷛	1.	2023)	at 50% Multi Output	94%	94%	94%
	ă.		at 50% Single Output	96%	96%	96%
2	S		at 100% Multi Output	91%	91%	91%
	2		at 100% Single Output	91%	91%	91%
	2	Minimum Power Factor Output	at 50% Multi Output	0.95	0.95	0.95
		in an in ower ractor output	at 50% Single Output	0.95	0.95	0.95
3 원		Overall Score based on the above		18	18	18
ਜੂ ਤੋਂ		Secure Data Sanitisation	General Availability	Y	Y	Ŷ
In the second	Į.	Availability of Integral Secure Data Deletion Tool at the End of Sale	Minimum 8 years	>8	8	8
ie Prod	Security	Availability of Security Updates at the End of Sale	Minimum 8 years	>8	8	8
5.8		Overall Score based on the above		9	5	5
3 2	2	Availability of the Free Latest Firmware				
7 Y		Updates from the market entry point	Minimum for 2 years	>2	2	2
	E.	Availability of Free Firmware Updates at the End of Sale	Minimum 8 years	>8	8	8
gulatic	Software & Firmware	Open Source Firmware/Software option for the updates/upgrades of the obsolete hardware	General Availability	Y	Unknown	Unknown
÷ 2	S .	Overall Score based on the above		12	4	4
2009/125/EC DIRECTIVE, COMMISSION REGULATION (EU) N0611/2013, COMMISSION REGULATIO (EU) 2019/424; Regulation for Storage Products (Lot9)	:Specific Info from the for Munimum of 8 Years end of sale	Availability of Product Specific Info at the End of Sale. (Product Type, OEM Details, Model Number, PSU Efficiency, Power Factor at 50%, ASHRAE Class, Data Sanitisation Instructions/tool/standards). (minimum 8 years)	Minimum 8 years	>8	8	8
	ct Specific Info d for Munimum e end of sale	Availability of Recycler Specific Info at the End of Sale (minimum 8 years)	Minimum 8 years	>8	8	8
	ty of Product Sp ty point and for from the end	Availability of Recycler Specific Info from the market entry point <u>for indicative</u> weight range (less than 5 g, between 5 g and 25 g, above 25 g) at	Cobalt Batteries	Y	Y	Y
	Availa bility na rket e ntry	component level, of the following CRM	Neodymium in HDDs	Y	Y	Y
	Ava	Digitalisation of product information	Tagging, Digital ID etc.	Y	Y	Y
	E	Overall Score based on the above		11	7	7
018	Avaitability of Instruction Manuals	Instructions on the disassembly operations for each necessary operation and component. (Type of Operation, type and number of fastening technique(s) to be unlocked, tool(s) required).	General Availability	Y	Y	Y
mber 2018	Ins	Repair Manuals	General Availability	Ŷ	Y	Y
				2	2	

Wuppertal Institut

Design & Manufacture –

Degree of Excellence & Conformity with the Recommended Guidelines

Complexity of the Design Design for Remanufacture Design for High-Quality Recycling Presence of Single-Use Parts Durability Re-Usability Upgradability Repairability Degree of Premature Obsolescence Product Specifications

Wuppertal Institut

Scoring

- Design must meet criteria in 10 key areas
- Each criterion awarded a score 0-4
- Average score rating = compliance with the basic Eco-design requirements in COMMISSION REGULATION (EU) 2019/424, Lot 9 and EU CE Action Plan.
- Higher the total score = more circular design.

% of rated le le le	load	A 2	B True	C Value
;le ti ;le ti	load			Value
ti Ile ti			2	
le ti		-	4	2
ti		2	2	2
		2	2	2
		2	2	2
e		2	2	2
lti		2	2	2
gle		2	2	2
ti		2	2	2
le		2	2	2
		18	18	18
ailability		1	1	1
Years		4	2	2
Years		4	2	2
		9	5	5
Years		4	2	2
Years		4	2	2
ailability		4	0	0
		12	4	4
94	0			
258	258			
36%	0%		_	
	↓	4	2	2
		4	2	2
			-	<u> </u>
		1	1	1
	+	-	-	L_1
	ilability Years Years Years Years Ilability 94 258	e Ilability Years Years Years Ilability 94 0 258 258	i 2 i 2 18 18 ilability 1 Years 4 12 12 94 0 258 258 36% 0% 4 4	2 2 18 18 18 18 18 18 11 1 Years 4 2 2 Years 4 9 5 Years 4 9 5 Years 4 2 2 Iability 4 2 2 Years 4 2 2 Iability 4 2 2 Iability 4 2 2 12 4 258 258 36% 0% 4 2 4 2

Wuppertal

Minimum PSU efficie	ncy and po	wer factor r	equirement	s from 1 Ma	arch 2020
		Minimum P	SU efficiency		Minimum power factor
% of rated load	10 %	20 %	50 %	100 %	50 %
Multi output	_	88 %	92 %	88 %	0,90
Single output	_	90 %	94 %	91 %	0,95

From 1 January 2023, for servers and online data storage products, with the exception of direct current servers and of direct current data storage products, the PSU efficiency at 10 %, 20 %, 50 % and 100 % of the rated load level and the power factor at 50 % of the rated load level shall not be less than the values reported in Table 2.

Table 2

Minimum PSU efficiency and power factor requirements from 1 January 2023

		Minimum PS	SU efficiency		Minimum power factor
% of rated load	10 %	20 %	50 %	100 %	50 %
Multi output	-	90 %	94 %	91 %	0,95
Single output	90 %	94 %	96 %	91 %	0,95

Power Specifications What is the minimum PSU efficiency at 10% single output? What is the minimum PSU efficiency at 20% single output? What is the minimum PSU efficiency at 50% single output? What is the minimum PSU efficiency at 100% single output? What is the minimum power factor at 50% single output?

operational[®] **SD** Wuppertal Institut

Home CEDaCI Compass My Account Logout

Ecodesign Evaluator ①

0% Overall Score

operational[®] **SD** Wuppertal Institut

Home CEDaCI Compass My Account Logout

Ecodesign Evaluator ⁽⁾

50%

Not circular

13%

Overall Score

100%

Circular

CEDaCI Compass My Account Logout Home

Ecodesign Evaluator ①

operational[®] SDM COO Wuppertal Techbuyer

Home CEDaCI Compass My Account Logout

Ecodesign Evaluator ①

35% Overall Score

Not circular

50%

Design & Manufacture Can the following parts be used/re-used across different product generations? Data Storage Yes No Memory Yes O No CPU O No Yes Motherboard Yes O No Expansion/Graphics Card O No Yes PSU Yes O No Chassis No Yes No Batteries O Yes Cooling Assemblies Yes O No <

operational[®] **SD Wuppertal Techbuyer**

100%

Circular

CEDaCI Home Compass My Account Logout

Ecodesign Evaluator ^①

No		¥]
Data Storage, M	ng parts be used for mo Iemory, CPU, Motherbo ssis, Batteries, Air Coolir	oard, Expansion/Graphics
Yes		~
generations, to CPU, Motherbo	ng parts be easily upgra extend their lifetime?D ard, Expansion/Graphic poling Assembly.	0
generations, to CPU, Motherbo	extend their lifetime?D ard, Expansion/Graphic	ata Storage, Memory,
generations, to CPU, Motherbo Batteries, Air Co Yes	extend their lifetime?D ard, Expansion/Graphic	ata Storage, Memory,

operational[®] SDM COO Wuppertal Techbuyer

O TND

Home CEDaCI Compass My Account Logout

Ecodesign Evaluator (1)

58% Overall Score

operational[®] SDM Cooperational Constitut

North-West Europe

Ecodesign Evaluator

The Ecodesign Evaluator is a set of consolidated **EU Ecodesign Criteria** reorganised in one place, making it much easier for the designers to follow. The tool includes Ecodesign guidelines from both the EU Circular Economic Action Plan and CEDaCI.

How do I use it? 7 Video 7

Check the overall circularity of your server design by answering questions about various criteria considered important for circularity.

operational[®] SDM COO Wuppertal

LSB

The CEDaCl Circular Server

operational[®] SD

Wuppertal

Institut

Techbuyer

Simple Standardised Modular design Easy to disassemble

One size fits all HDD caddy design Up to 24 x 2.5inch or 9 x 3.5 inch HDDs

Reduced fastenings Minimal materials variation Reduced use of plastics

Interreg

CEDaCI

North-West Europe

North-West Europe CEDaCl

The CEDaCI Circular Server

Simple Standardised Modular design Easy to disassemble

One size fits all HDD caddy design Up to 24 x 2.5inch or 9 x 3.5 inch HDDs

Reduced fastenings Minimal materials variation Reduced use of plastics

The CEDaCI Circular Server

North-West Europe

Chassis mass: CEDaCl server = 14kg Standard server = 22kg

Total components: CEDaCl server = 65 Standard server = 117

Mass of plastics : CEDaCl server = 85.69g Standard server = 889.45g

Wuppertal Institut

CEDaCI Circular Server

LCSA – compared with current servers - LCM Sept 2023 Can be manufactured now! Can be developed as technology changes

CEDaCI Circular Server

Major challenges

Electronics:

PCB substrate – alternative materials – e.g. paper? Biopolymer?

3D printed – inks loaded with conductive materials? Board and components printed as one? Individual component design –

Biodegradable capacitors etc? Nano-sized circuits – reduce embodied materials? Materials substitution?

Wuppertal Institut

North-West Europe

FDaCl

Wuppertal

W

Nd

Au

Thank you for listening CEDaCI – runs until Sept 2023 Join us - fully funded SME training sessions

February 21, 2023: 08:30-11:30 GMT (French) March 28, 2023: 14:00-17:00 GMT (English) April 25, 2023: 09:00-12:00 GMT (English)

follow us - cedaci.org

https://www.linkedin.com/company/cedaci

operational[®] **SD**

https://twitter.com/cedaci_project

Techbuyer

Та

Wuppertal

Institut

Techbuyer

Horizon –

LSB

building team / developing application

Circular Electronics – using AI to increase CRM recycling & reclamation We have some partners – are you interested in participating? Deborah.Andrews@lsbu.ac.uk N.Adibi@weloop.org

CIRCULAR ECONOMY SYSTEMS FOR LITHIUM-ION BATTERIES - THE REUSE OPTIONS AFTER THE FIRST-LIFE IN THE ELECTRIC VEHICLE

Thesis at the University of St.Gallen Nina Meyer

1 RESEARCH QUESTION

METHODOLOGICAL APPROACH

3 RESULTS

2

4 CONCLUSIONS

RESEARCH QUESTION

Which **concepts** exist **for lithium-ion batteries** at the end of their first life in the EV and what are the **advantages or disadvantages** of the individual concepts?

METHODOLOGICAL APPROACH

ANALYTICAL FRAMEWORK

DOCUMENT ANALYSIS

15 concepts

- Lead-acid battery recycling system Clarios
- **9 OEMs** Volkswagen, Tesla, Mercedes-Benz,
 Renault, BMW, Volvo, Nissan,
 Toyota, BYD
- Car recycling company ARN
- Energy management project
 Mitsubishi, Peugeot, EDF, Forsee
 Power
- 2 battery full-service companies
 Spiers New Technologies, upVolt
- Circular economy project
 die Post

EXPERT INTERVIEWS

6 experts

- Michael Sattler
 Expert in second-life, Ökozentrum
- Pascal Städeli
 Board member of the VESE*
- Urban Windelen CEO of the BVES**
- Janet Kes
 Corporate and public affairs, ARN
- Christian Ochsenbein
 Head of Swiss Battery Technology
 Center, Switzerland Innovation Park
- Dr. Andreas Pfrang
 Researcher on batteries for mobility
 applications at the Joint Research
 Centre, European Commission
RESULTS

FIELDS OF ACTIVITY OF THE INDIVIDUAL CONCEPTS

	Material- gewinn-	Batterie- herstell-	Zero-Life	Fahrzeug- herstell-	First- Life	Repara- tur	Samml- ung	Umbau	Second- Life	Recycl- ing	Entsorg- ung
	ung	ung		ung							
Volkswagen		X		x		x	x	x	x	x	
Mercedes- Benz		x	x	x		x			x	x	
Renault		x		x		x	х	x	х	x	
BMW		x		x			Р		х	Р	
Volvo		x		x		x		Р	Р	Р	
Nissan		x		x			х	х	х	Р	
Toyota				x		Р	Р		Р	Р	
BYD		x		x			Р		Р	x	
Tesla		x		x		x	х			x	
ARN							Р	Р	Р	Р	
Energy-Ma- nagement- Projekt								x	x		
Spiers New Technologies						x	x	x	x	Р	
UpVolt						x		x	x		
Die Post								х	х		

RESULTS

Additional value creation opportunities (grid services, energy storage, balancing energy, service models)

Nationally organized ecosystem

Economic difficulties in long-term establishment of remanufacturing step in second-life

Experts favor different concepts

Details to implementation of concepts not available (design, financing, action plan)

ARN system is realistic on a national level (advanced recycling fee, specialized treatment by different companies, collect and process large quantities efficiently, capacities enable investments to be made)

ARN system in EU is dependent on involvement of OEMs (data accessibility, regulations)

CONCLUSIONS

O1 Concepts on the market show inconsistencies and lack forward planning, especially regarding the implementation.

A circular economy for LIB in Europe is in its initial phase and should
be established as far as possible before large quantities of batteries reach their EoL in EV.

03

The current state of planning and implementation cannot yet provide clarity on the future course of action regarding the establishment of a circular economy for LIB from EV.

Recycling of rare earth elements from electric motors of the e-mobility

<u>Torta Gianluca</u>, Fabrizio Passarini

Department of industrial chemistry "Toso Montanari", University of Bologna

Rare Earth Elements (REEs)

H Rare Earth Elements									He								
						Ne											
Na	Mg											AI	Si	Р	s	CI	Ar
к	Ca	Sc	ті	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ba	La-Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt							_		
		Lar	thani	des	_	_	_		-	-							_
	La Ce Pr Nd PmSm Eu Gd Tb Dy Ho Er Tm Yb Lu																
	Actinides Ac Th Pa U Np Pu AmCm Bk Cf Es Fm Md No Lr																

2020 Critic	2020 Critical Raw Materials (new as compared to 2017 in bold)					
Antimony	Hafnium	Phosphorus				
Baryte	Heavy Rare Earth Elements	Scandium				
Beryllium	Light Rare Earth Elements	Silicon metal				
Bismuth	Indium	Tantalum				
Borate	Magnesium	Tungsten				
Cobalt	Natural Graphite	Vanadium				
Coking Coal	Natural Rubber	Bauxite				
Fluorspar	Niobium	Lithium				
Gallium	Platinum Group Metals	Titanium				
Germanium	Phosphate rock	Strontium				

Why REEs are so critical?

1) Geographical distribution of the global production

- 60% located in China
- 0% in Europe (100% dipendent from import)

European NdFeB magnets demand

Source: DEVELOPING A SUPPLY CHAIN FOR RECYCLED RARE EARTH PERMANENT MAGNETS IN THE EU, Vasileios Rizos, Edoardo Righetti, Amin Kassab, December, 2022 - 07

Feedstock of EoL NdFeB Permanent Magnets in Europe						
tons/year	2020	2025	2030	2035	2040	
HDD	580	350	370	440	480	
Wind Turbines	-	1	10	1350	1700	
Air Conditioners	450	500	565	750	nd	
E-vehicles	-	5	330	4460	8000	
E-bikes	405	1000	2970	4590	nd	

European Nd magnets production capacity : 1 000 t

European Nd magnets demand : 21 000 t

How to mitigate the problem: recycling

- UE one of the main consumer of products containing REES
- Volume of waste containing NdFeB magnets is increasing

Source: Valomag project

Source: Metals for clean energy: Pathways to solving Europe's raw materials challenge

How to mitigate the problem: recycling

- UE one of the main consumer of products containing REES
- Volume of waste containing NdFeB magnets is increasing
- By 2050 recycling could cover more than 75% of european REEs demand

	Kg CO2 eq / Kg magnete
Magnet from raw materials	25
Recycled magnet	5

How to mitigate the problem: recycling

- UE one of the main consumer of products containing REES
- Volume of waste containing NdFeB magnets is increasing
- By 2050 recycling could cover more than 75% of european REEs demand
- Recycled magnets have 5 times lower CO2 emission

Actual situation

- REEs are not recovered through traditional recycling process in-use
- REEs diluted in ferrous fraction

< 1%

Source: Value Analysis of Neodymium Content in Shredder Feed: Toward Enabling the Feasibility of Rare Earth Magnet Recycling, 2014

Aim of the project

Fiat Ducato electric

FIAT 500 electric

Jeep Compass plug-in hybrid

- Quantification of Nd magnets content inside end-of-life electric vheicles
- Characterization of magnets composition to calculate the economic potential
- Development of a recycling process of REEs from eletric vheicles of emobility

Nd magnets content in different components of electric vehicles

Vehicle	Component	Magnets mass	Total mass
venicie	component	g	g
	electric drive motor	1550	
Ducato 100% electric	electric power steering	131	1762
	Air conditioning	81	
	Electric drive motor	1080	
FIAT 500 electric	electric power steering	42	1202
	Air conditioning	81	
	Electric power steering	84	
	Air conditioning	81	
Jeep Compass hybrid	Electric gear	410	1007
	Electric gear	68	
	Alternator	363	

Nd magnets content in different components of electric vehicles

Vehicle	Component	Magnets mass	Total mass
Venicle	component	g	g
	electric drive motor	1550	
Ducato 100% electric	electric power steering	131	1762
	Air conditioning	81	
	Electric drive motor	1080	
FIAT 500 electric	electric power steering	42	1202
	Air conditioning	81	
	Electric power steering	84	
	Air conditioning	81	
Jeep Compass hybrid	Electric gear	410	1007
	Electric gear	68	
	Alternator	363	

Electric drive motor

Fiat 500

Fiat Ducato

Nd magnets content in different components of electric vehicles

Vehicle	Component	Magnets mass	Total mass
Venicle	component	g	g
	electric drive motor	1550	
Ducato 100% electric	electric power steering	131	1762
	Air conditioning	81	
	Electric drive motor	1080	
FIAT 500 electric	electric power steering	42	1202
	Air conditioning	81	
	Electric power steering	84	
	Air conditioning	81	
Jeep Compass hybrid	Electric gear	410	1007
	Electric gear	68	
	Alternator	363	

Electric power steering

Air conditioning

Nd magnets content in different components of electric vehicles

Vehicle	Component	Magnets mass	Total mass
Venicle	component	g	g
	electric drive motor	1550	
Ducato 100% electric	electric power steering	131	1762
	Air conditioning	81	
	Electric drive motor	1080	
FIAT 500 electric	electric power steering	42	1202
	Air conditioning	81	
	Electric power steering	84	
	Air conditioning	81	
Jeep Compass hybrid	Electric gearbox	410	1007
	Electric gearbox	68	
	Alternator	363	

Electric gearbox

Alternator

REEs content in magnets

Vehicle	Component		% REEs				mass in magnets		
	Component	Nd (%)	Pr(%)	Dy(%)	Nd (g)	Pr(g)	Dy(g)		
Ducato 100% elettric	Electric drive motor	20,4	6,8	4,5	316	105	70		
	electric power steering	30,1	6,2	0,0	39	8	0		
	Air conditioning	22,4	5,4	1,2	18	4	1		
FIAT 500 Elettrica	Electric drive motor	28,4	4,4	0,0	307	47	0		
	electric power steering	19,9	5,0	1,7	8	2	1		
	Air conditioning	22,4	5,4	1,2	18	4	1		
	electric power steering	20,2	5,2	0,0	17	4	0		
	Air conditioning	22,4	5,4	1,2	18	4	1		
Jeep Compass	big electric gear	20,8	4,5	2,2	85	18	9		
	small electric gear	19,5	4,2	0,0	13	3	0		
	Alternator	18,4	5,1	0,0	67	18	0		

Characterization of magnets composition

Economic potential

• The recovery of REEs is economically interesting

Economic value of REEs in every component

Vehicle	Component	Econo	omic value	5	Total
venicie	Component	Nd (€)	Pr (€)	Dy (€)	ŧ
	Electric drive motor	42,3	20,9	24,9	88,0
Ducato 100% electric	electric prower steering	5,3	1,6	0,0	6,9
	Air conditioning	2,4	0,9	0,3	3,6
	Electric drive motor	41,0	9,3	0,0	(50,3)
FIAT 500 electric	Electric power steering	1,1	0,4	0,3	1,8
	Air conditioning	2,4	0,9	0,3	3,6
	Electric drive motor	21,7	5,0	8,5	35,1
	Electric power steering	2,3	0,9	0,0	3,1
loop Compace bybrid	Air conditioning	2,4	0,9	0,3	3,6
Jeep Compass hybrid	Alternator	8,9	3,6	0,0	12,6
	Big electric gearbox	11,4	3,7	3,1	18,2
	Small eletric gearbox	1,8	0,6	0,0	2,4

Economic potential

• The recovery of REEs is economically interesting

Economic value of REEs in every component

Vehicle	Component	Econo	omic value	5	Total	
venicie	Component	Nd (€)	Pr (€)	Dy (€)	€	
	Electric drive motor	42,3	20,9	24,9	88,0	
Ducato 100% electric	electric prower steering	5,3	1,6	0,0	6,9	
	Air conditioning	2,4	0,9	0,3	3,6	
	Electric drive motor	41,0	9,3	0,0	50,3	
FIAT 500 electric	Electric power steering	1,1	0,4	0,3	1,8	
	Air conditioning	2,4	0,9	0,3	3,6	
	Electric drive motor	21,7	5,0	8,5	35,1	
	Electric power steering	2,3	0,9	0,0	3,1	
loop Compace hybrid	Air conditioning	2,4	0,9	0,3	3,6	
Jeep Compass hybrid	Alternator	8,9	3,6	0,0	(12,6)	
	Big electric gearbox	11,4	3,7	3,1	18,2	
	Small eletric gearbox	1,8	0,6	0,0	2,4	

 The dismantling of these components from the vehicle has not a significant impact on the economicity of the recovery (except for the electric power steering)

Economic value of Cu, Fe, Al inside an alternator (endothermic car)

Material	% w/w	Price (€/Kg)	Value per alternator (€/motor)	Total (€/motor)
Fe	59	0,27	0,64	
Al	30	2,1	2,52	(6,24)
Cu	11	7	3,08	

How to recycle these components?

The recycling process we are developing

160 Kg electric motors

12,4 kg of Nd magnets inside

Complete thermal demagnetization

Yield ≈ 50-60%

Mechanical processing

≈90% Nd magnet

Conclusions

- Interesting economic potential of REEs inside electric vehicles for recovery
- The dismantling of components containing Nd magnets from the vehicle is not economically impactful
- Recycling is technologically feasible
- Recycling is not the solution but can mitigate the problem

Doctoral candidate at University of Bologna, Department of Industrial chemistry

gianluca.torta2@unibo.it

Thank you

University of Bologna

NdFeB magnet demand in the EU from selected applications, thousand tonnes (left) and shares (right)

NdFeB magnet theoretical recycling potential in the EU from selected applications, thousand tonnes (left) and shares (right)

Source: DEVELOPING A SUPPLY CHAIN FOR RECYCLED RARE EARTH PERMANENT MAGNETS IN THE EU, Vasileios Rizos, Edoardo Righetti, Amin Kassab, December, 2022 - 07

Creating Materials & Energy Solutions

Creating Materials & Energy Solutions

IRTC Conference 2023 (11:30 AM, February 17, Lille/France): Session 6 – Design for circularity

Addressing criticality in rare earths through the decarbonization in permanent magnets recycling

IOWA STATE

UNIVERSITY

Denis Prodius, Ikenna C. Nlebedim

Critical Materials Institute/ Ames National Laboratory US DOE

Acknowledgement

This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. This work was also supported by the U.S. Department of Energy SBIR & STTR Program.

Energy Efficiency & Renewable Energy

Critical Materials Institute

Regents Innovation Fund IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY

Contributors

- Ikenna C. Nlebedim (project lead, 2016-2021)
- Kinjal Gandha, Anja-Verena Mudring, Tim McIntyre
- Nighat A. Chowdhury, Sidi Deng, Hongyue Jin, John Sutherland (TEA/LCA)
- Caleb Stetson, Aaron Wilson (INL, S/WWT)
- Dan Bina, Scott Roberts, Kevin Stoll, Travis Patterson (TdVib LLC)
- Denis Prodius (project lead, 2021 -)

Adapted from <u>https://www.ameslab.gov/cmi/cmi-project-3313-recovery-critical-materials-</u> <u>dilute-electronic-waste-streams</u>

Focus Area Leadership Team:

- Carol Handwerker
- Dan Ginosar
- Scott McCall
- Ruby Nguyen
- Yoshiko Fujita

Adapted from https://mse.utk.edu/critical-materials-institutes-winter-meeting-2022/

Why Recycle Rare Earths from E-wastes

IEA. All rights reserved.

Sources: Henckens (2021); UNEP (2011) for aluminium; Sverdrup and Ragnarsdottir (2016) for platinum and palladium; OECD (2019) for nickel and cobalt.

IEA. All rights reserved.

Figures (modified) from IEA report 2021, The Role of Critical Minerals in Clean Energy Transitions.

For lithium, cobalt, and rare earth elements (REEs), the top three producing nations control well over three-quarters of global output. In some cases, a single country is responsible for around half of worldwide production.

Adapted from https://foreignpolicy.com/2019/05/01/mining-the-future-china-critical-minerals-metals/

Sources and Types of Magnets for Recycling

Sources:

- Electronic waste (e.g., hard disk drives, etc.)
- Scrap magnets from industrial manufacturing wastes.
- Swarfs from post-manufacturing operations (grinding, slicing, etc.).
- Any other magnet source.

Adapted from <u>https://pixabay.com/vectors/hard-</u> <u>disk-storage-computer-159264/</u>

Types:

- Nd-Fe-B
- Sm-Co
- Terfenol-D (not a magnet).

Permanent magnets as viable sources for REEs

Every year in the United States, roughly 20 million hard drives are retired from data centers: ~35% **MUST** be shredded

Pyrometallurgical vs. Hydrometallurgical Approaches

Pyrometallur	gical Approaches	Hydrometallurgical Approaches		
Advantages	Disadvantages	Advantages	Disadvantages	
Generally applicable to all types of magnet Compositions	Larger energy input required	Applicable to all types of magnet compositions.	Many process steps required before obtaining product.	
No generation of waste water except if hydrometallurgical step is needed in addition.	Unsuitable for oxidized magnet materials	Applicable to non-oxidized and oxidized alloys	Consumes large amounts of chemicals	
Can result is REE products as metals and alloys	Generates large amounts of solid wastes.	Same processing steps as those for extraction of rare earths from primary ores	Generates large amounts of waste water and can produce solid wastes.	
	Typically requires magnet pre- concentration for e-wastes.		Typically requires magnet pre- concentration for e-wastes.	
	May require subsequent hydrometallurgical operations.			

Adapted from Binnemans et al. <u>http://dx.doi.org/10.1016/j.jclepro.2012.12.037</u>

Ideal REEs Recovery Technology...

- Allows for recycling of other components in a device housing the rare earth elements containing materials
- Results in valuable recycling by-products
- Minimizes or eliminates pre-processing steps prior to recovering REEs
- Safe to deploy, energy efficient and minimal negative environmental impact
- Results in products suitable to be reinserted into the rare earth elements supply chain
- Enable each REE constituents to be recovered separately rather than in mixed forms

Source: Nlebedim and King, JOM, **70** (2018) pp 115–123

Acid-free Dissolution Recycling Technology

• A hydrometallurgical approach accomplished *via* <u>selective</u> REDOX process. $2RE_2Fe_{14}B + 34Cu^{2+} + \frac{21}{2}O_2 \xrightarrow{RT} 4RE^{3+} + 28Fe^{2+} + Cu_3(BO_3)_2 \downarrow + 15Cu_2O\downarrow + Cu^0\downarrow$

adapted from https://www.youtube.com/watch?v=lBavcpUgiGE (Author: Ilusys Systems)

Progress in the Development of the Acid-free Dissolution Process

Inman et al. Clean Technol. Recycl. (2021), doi:10.3934/ctr.2021006

Lab-scale: magnets made with recovered REEs

Lab-scale: leaching efficiency for REE magnets in e-waste = 75%

Prodius et al. ACS Sust. Chem. Eng. (2020), https://doi.org/10.1021/acssuschemeng.9b05741

Timeline of Technology Maturation (2016-2022)

Initial Commercialization Phase: 2019-2020

Adapted from https://www.news.iastate.edu/news/2022/08/01/state-fair

SBIR STTR Current Commercialization Phase: 2021-2023

Adapted from <u>https://src.iastate.edu/innovation-work-numbers</u>

Adapted from https://www.linkedin.com/company/tdvib-llc/

1st Commercial Rare Earth Metal

Technoeconomic Analysis based on 2020 Pricing

Summary of Economic Outcomes under the Worst-Case (0% Dy in Magnet and 96% REE Recovery Efficiency) and Best-Case (6% Dy in Magnet and 99% REE Recovery Efficiency) Scenarios of the Nd-Fe-B Swarf Recycling Process^a

category	value (\$/year)	cost contribution
direct cost	\$611,754	54%
material cost	\$364,792	32%
utility cost	\$49,664	4%
other cost	\$197,298	18%
capital cost (amortized)	\$76,478	7%
indirect cost	\$120,330	11%
general cost	\$284,0244-\$717,034	~28%
total cost	\$1,092,585-\$1,525,596	100%
total revenue (A)	\$1,242,542-\$2,685,911	
net profit (B)	\$149,956-\$1,160,315	_
net profit margin ratio (B/A)	12-43%	For

- 100 metric tons of Nd-Fe-B magnet swarf per year to produce 32 metric tons of REOs
- Due to the revenue differences between the worst-case and the best-case scenarios, income taxes also changed, resulting in a range of total costs.

For February 2022 prices, net profit margin ≈55 – 59%.

Environmental Impact

Impact	Unit	Acid-free dissolution	Bastnasite-monazite from Bayan obo		Ion adsorption clay	
category		Baseline (A)	Upper bound (A/B)	Lower bound (A/C)	Upper bound (A/D)	Lower bound (A/E)
Ozone depletion	kg CFC-11 eq	5.7E-06	25%	68%	33%	74%
Global warming	kg CO ₂ eq	3.8E+01	33%	102%	33%	51%
Smog	kg O ₃ eq	1.7E+00	10%	21%	24%	38%
Acidification	kg SO ₂ eq	1.8E-01	19%	44%	2%	2%
Eutrophication	kg N eq	8.4E-02	45%	130%	2%	2%
Carcinogenics	CTUh	7.1E-07	12%	26%	15%	22%
Non carcinogenics	CTUh	6.4E-06	32%	100%	17%	26%
Respiratory effects	kg PM2.5 eq	3.0E-02	5%	9%	23%	37%
Ecotoxicity	CTUe	1.0E+02	35%	102%	18%	27%
Fossil fuel depletion	MJ surplus	7.0E+01	37%	113%	55%	77%

- 1 kg of REO from Nd-Fe-B magnet swarf vs virgin production from Bayan Obo ores and ion adsorption clay in southern China after applying economic allocation.
- (B) and (D) represent the environmental impacts of producing 99.5% individual REO; (C) and (E) represent the environmental impacts of producing 92% mixed REO

Chowdhury et al. ACS Sust. Chem. Eng. (2021) https://doi.org/10.1021/acssuschemeng.1c05965

Results: Uncertainty analysis

Chowdhury et al. ACS Sust. Chem. Eng. (2021) https://doi.org/10.1021/acssuschemeng.1c05965

Environmental Impact

- ≥99.5% pure mixed REO production from magnet swarf
- 92% pure mixed REO production from bastnäsite-monazite
- ■≥99.5% pure individual REO production from bastnäsite-monazite
- 92% pure mixed REO production from ion adsorption clay
- ■≥99.5% pure individual REO production from ion adsorption clay

• A new version of the technology valorizes >99% of copper(II) salt, eliminating its contribution to all the impact categories.

Chowdhury et al. ACS Sust. Chem. Eng. (2021) https://doi.org/10.1021/acssuschemeng.1c05965

Environmental Impacts: Different Copper(II) Salts

Category	Unit	Copper nitrate hemi(pentahyd rate) (A)	Copper chloride dihydrate (B)	Copper sulfate pentahydrate (C)	Copper acetate monohydrate (D)
			(A/B)	(A/C)	(A/D)
Equivalent amount	kg	1.00	136%	93%	117%
Market price	\$/kg	1.50	60%	83%	122%
Ozone depletion	kg CFC-11 eq	1.10E-06	83%	97%	86%
Global warming	kg CO ₂ eq	3.98	123%	142%	130%
Smog	kg O ₃ eq	0.42	102%	107%	108%
Acidification	kg SO ₂ eq	0.10	96%	98%	103%
Eutrophication	kg N eq	0.17	57%	95%	100%
Carcinogenics	CTUh	1.53E-06	94%	95%	99%
Non carcinogenics	CTUh	4.33E-05	95%	95%	100%
Respiratory effects	kg PM2.5 eq	0.01	92%	94%	97%
Ecotoxicity	CTUe	921.29	88%	88%	100%
Fossil fuel depletion	MJ surplus	4.79	81%	98%	69%

Effects of different copper(II) salts on the economic and environmental performance of Nd-Fe-B swarf recycling process.

Chowdhury et al. ACS Sust. Chem. Eng. (2021) https://doi.org/10.1021/acssuschemeng.1c05965

REE separation: pure materials for metal making

Solvent-Driven Fractional Precipitation

C. Stetson, A. et al. Nature Commun. 13 (2022), 3789

Samarium sulfate produced in DME-aqueous system

Prodius D. et al. Chem. Commun. 56(77) (2020), 11386-11389

1 Ames National Laboratory (Ames, Iowa)

2 Idaho National Laboratory (Idaho Falls, Idaho)

3 Oak Ridge National Laboratory (Oak Ridge, Tennessee)

4 Lawrence Livermore National Laboratory (Livermore, California)

(T)

Team Members

Questions?

Affiliates

The Critical Materials Institute, an Energy Innovation Hub, is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.

Thank you!

BIOSPHERE SOLAR: A REVOLUTION IN SOLAR

Biosphere Solar is redesigning solar panels to enable circular raw material flows at End-of-Life.

CURRENT STATUS

Fund raised: €30,000 Development: 5 iterations Accelerator: Circular Valley Wuppertal

Source: Science 2019

PV production (million metric tonnes)

PV waste (million metric tonnes)

LANDFILLING & ECOTOXICITY

O D A V

But will solar energy be sourced from panels made to be thrown away and landfilled after a lifetime of 20 years? Will the toxic elements be left to leach into our lands, poisoning future generations?

THE TECHNOLOGY INNOVATING PV FOR A GOOD ANTHROPOCENE

STANDARD SOLAR PANEL

- Hard to recycle

Repairable European supply chair

BIOSPHERE SOLAR

COMPONENT MANUFACTURING

recyclable materials will be turned into new components by our partners

MODULE MANUFACTURING

reusable components are plugged into refurbished modules by biosphere solar and partners

SIOSPHERE

USE PHASE

the product is designed to be highly durable, and can be re-used multiple times

Go to www.menti.com and use the code 2893 3956

Does it make sense to make a circular product in a linear economy?

🕍 Mentimeter

OUR ROADMAP Milestones, development & investment

DISRUPTING THE SOLAR INDUSTRY

To bring about a circular revolution in the solar industry, Biosphere Solar requires a clear timeline. The past year has been about developing V0 of the Biosphere Solar solar panel: a prototype which builds towards an MVP. With each iteration of Biosphere Solar's new design, an additional layer is placed: in 2023, Biosphere Solar's solar panel V1 will be launched - a fully certified product which can compete on the solar market; in 2024, a locally disruptive design will be released (V2), allowing large scaling production and a market expansion; and the year 2025 will see Biosphere Solar releasing V3, a globally disruptive design for the solar panel.

Developer Domonkos Planer - Industrialisation

Developer

0 4

– T E A M

> Victor Beccaria - Industrialisation Developer

BSc International Business MSc Industrial Ecology

Judit Klooster - Community Builder

BSc Maastricht Science Programme MSc Industrial Ecology

BSc Applied Physics MSc Sustainable Energy Technology

Falko Baatsen - Mechanical Engineer

Rutger Ritsma - Design Engineer

Yoop Kroon - Interconnection Designer

BSc NanoBiology MSc Industrial Ecology

Liam McClain - Content Creator

Go to www.menti.com and use the code 4920 0538

How can product developing startups contribute to transparent, circular supply chains?

know their supplier sharing data as a service business showing advanced cases link with a funder cooperate with ri institu challenging industrials work with a uni collaboration outreach ovation data sharing deliver what you promise innovative project ideas out of the box thinking disrupting status quo product passport

Mentimeter

Circularity index for product design: a case study of car-based mobility

Gabriel Carmona Kai Whiting Jonathan Cullen

First IRTC conference – 17th Feb 2023

How far are we from full circularity?

Adapted from Cullen, 2017

Alpha index

 $\alpha_{inflow} = \frac{circular\ inflow\ (recycling, repurposing, reuse)}{total\ material\ inflow}$

 $=\frac{recovered\ EOL\ material}{total\ material\ demand}$

- Meso and micro scale: inputs and outputs might have different levels of circularity.
- Circular/recovered flows do not necessarily rere-enter the same system.
- Supply vs demand imbalance.
- Metal pollution constrains.

α

 $\alpha_{outflow} = \frac{circular \ outflow \ (recycling, repurposing, reuse)}{total \ material \ outflow}$

Increasing impact

Increasing scope

Beta index

 $\beta = 1 - \frac{life \ cycle \ emissions \ of \ circular \ system}{life \ cycle \ emissions \ of \ linear \ system}$

- Defining the reference point and reference direction.
- From energy to environmental impact (e.g. carbon emissions).
- Life cycle approach (environmental trade offs and burden shifting).
- Service approach (mobility, shelter/housing, nutrition, etc.)

Framework: Low carbon and circular economy

Keep products and materials in use

EOL recovery, reuse and repurposing

Decouple resource use to allow regeneration of natural systems •

Service efficiency

Phase out waste and pollution

Long-term decarbonisation

Bridging service systems, circularity and decarbonisation

CI of current car-based mobility

Cl of lightweighting

& composites

CI of low energy and material demand

nature energy

ANALYSIS

A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies

Low Energy and Material Demand (LEMD):

- Increase industry's resource efficiency:
 - dematerialisation by 89%
 - material efficiency by 72%.
- Vehicle fuel efficiency reaches 0.7 MJ/pkm (50%)
- Stock efficiency increases to 25,383 pkm/veh (40%):
 - Shared mobility, MaaS
 - Compact/transport oriented urbanisation

Final thoughts

Some guiding questions to ask when assessing CE strategies include:

- What could be the theoretical benchmark for the CE?
- What other scenario narratives and strategies could be proposed?
- What are the implications for other transport modes (bus, train) and infrastructure?
- What is the acceptance of such indicators by industry?
- To what extent reducing material demand decreases resource criticality?

Thank you!

Gabriel Carmona

lgc29@cam.ac.uk

This research receives the financial support of the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101027892 and the Fonds de la Recherche Scientifique – FNRS under Grant No CR40001149.

References

- Bobba, S., Carrara, S., Huisman, J., Mathieux, F., & Pavel, C. (2020). Critical raw materials for strategic technologies and sectors in the EU. A Foresight Study.
- Carmona, L.G., Whiting, K., Haberl, H., Sousa, T., (2021). <u>The use of steel in the United Kingdom's transport</u> <u>sector: A stock–flow–service nexus case study</u>. J. Ind. Ecol. 25, 125–143.
- Carmona, L. G., Whiting, K., & Cullen, J. (2022). <u>A stock-flow-service nexus vision of the low carbon economy</u>. Energy Reports, 8, 565-575.
- EMF (2013) Towards the Circular Economy Vol. 1, Ellen MacArthur Foundation, Cowes, UK.
- Grubler, A., Wilson, C., Bento, N., Boza-Kiss, B., Krey, V., McCollum, D. L., ... & Valin, H. (2018). A low energy demand scenario for meeting the 1.5 C target and sustainable development goals without negative emission technologies. Nature energy, 3(6), 515-527.
- Cullen, J. M. (2017). Circular Economy: Theoretical Benchmark or Perpetual Motion Machine?. Journal of Industrial Ecology, 21(3), 483-486.
- Rodrigues, B., Carmona, L.G., Whiting, K., & Sousa, T. (2022). <u>Resource efficiency for UK cars from 1960 to</u> 2015: From stocks and flows to service provision. Environmental Development, 41, 100676.