

The Rare Earth discovery in Kiruna and its impact on European supply security

IRTC 2023 Pierre Heeroma SVP Strategic Projects

Sector LKAB

Our iron ore products

Climate-efficient high-grade iron ore products for the global steel industry

Blast furnace pellets

Direct reduction pellets

Fines

Our climate impact today

-84%

CO₂-emissions are reduced with 84 percent since 1960 with today's pellet production

Tonnes of carbon dioxide

4% of Swedish industry's total emissions of carbon dioxide

The industry's climate impact today

2.6_{billion}

Tonnes carbon dioxide totally from the iron and steel industry

Of all carbon dioxide emissions globally

25% of global industry carbon dioxide emissions

We take a step forward in the value chain

From iron ore pellets to carbon-free sponge iron

LKAB can become Europe's home for P and REE

>4 billion tonnes of mineral resources and reserves Iron, Phosphorus and Rare Earth Metals

Large-scale iron ore production beyond 2060

THIN DOM: NO.

Valuable mineralisations are deposited today

Per Geijer: Mineral resource

Potential to supply:

• 30% Europe's REE demand

7 times Sweden's mineral fertilizers demand

Section 2018

Per Geijer	Tonnage	Fe	Р	TREO
Iron ore deposit	Mt	%	%	%
Mineral resource	585	50,5	2,41	0,18

Mineral fertilisers enable 50 percent of the world's food production

• Europe is dependent on phosphorus imports

• 2020, CIS excluded (~8,3 million tonnes)

Figure 1: Rare earth demand by end use sectors and breakdown of magnet demand by mass, 2020

Source: Roskill, 2021; BGR, 2021.

Note: Ce = Cerium; Dy = Dysprosium; HDD = hard disk drives; La = lanthanum; Nd = neodymium; Pr = praseodymium; Sm = samarium.

Europe needs rare earths but has no extraction and marginal refinement

LKAB's future fossil-free production

Circular and fossil-free production

Mining 🕿 LKAB A strong and sustainable nordic Malmfälten value chain for REE Apatite Industry park Luleå REO concentrate REEtec Herøya, Norway Neodymium & Praseodymium

Challenges to overcome

Industry and policy makers need to work to together to decrease risks and enable European production

From

- Globalisation
 - Free trade
 - Unfair trade
 - Limited European production
- Limited exploration and mining
- Not in my backyard
- Lack of holistic view and jugement
- Increasingly complex and lengthy permitting processes
- Short term view

to

- Globalisation
 - Free trade
 - Fair trade
- Value chain
- Critical raw materials are strategic for Europe
 - Exploration and production in Europe
 - Strategic stocks
 - Balancing opposing interests
 - Efficient permitting processes
- Long term strategy

IRTC 2023 – RAW MATERIALS FOR A SUSTENAINABLE FUTURE

Niobium as a critical raw material for the world and strategic for Brazil

Carlos Peiter – Centro de Tecnologia Mineral-CETEM, Brazil Tiago Braga – Instituto Brasileiro de Informação em Ciência e Tecnologia-IBICT, Brazil Gian Andrea Blengini – Politecnico di Torino-PoliTO, Italy (JRC-DG GROW) Fernando Castro, Lucia Helena Xavier, Adelson Castro, Ligia Marcela Alvarado – Centro de Tecnologia Mineral-CETEM, Brazil Efigenia Rossi – Escola de Engenharia de São Carlos-EEUSP, Brazil Marzia Traverso – Aachen Universitatea-INAB, RWTH

> Lille, FR 15-17th Feb. 2023

The background report

Partnerships

Brazilian research institutions: CETEM, IBICT, EESC-USP

European research institutions: JRC/EC (Ispra, IT) and INAB-RWTH Aachen University (GER)

Brazilian Company: CBMM (cooperation agreement)

Funding : EU Brazil Sectoral Dialogues, nineth call (2018) and Ministry for Science, Technology & Innovation, Brazil

Why is Niobium important ?

Steels for pipelines, structural and stainless steels, superalloys, superconductors, catalysts, optolenses, capacitors

Steel for pipelines

Niobium for HSLA steel

Superconductors (e,g. CERN Particle accelerator Large Hadron Collider , 27 Km long)

Superalloys for jet engines

Under development Nb/ Ti oxides anodes for lithium ion batteries

Structural steel for car, trucks, buses, etc

Source: Photos available at various internet sites.

Nb contributions to innovations in energy storage and generation

Home / News / VW Caminhões e Ônibus and CBMM sign an unprecedented partnership for the development of automotive batteries with Niobium

VW Caminhões e Ônibus and CBMM sign an unprecedented partnership for the development of automotive batteries with Niobium

Volkswagen Caminhões e Ônibus, a pioneer in the development and serial production of electric trucks in Latin America, and CBMM world leader in the production and sale of Niobium products, enter into a new partnership to encourage electric mobility. The agreement aims to develop and apply ultra-fast recharge batteries for use in electric vehicles designed by the automaker. The uniobium for this purpose is unprecedented in the global automotive industry.

Source:https://www.vwco.com.br/noticias/270?lang=en_US

itC23

itC23

Niobium in S&T and Innovations

Results from 4.953 papers sample and from 3.092 patents sample collected 2013-2019

Steel making and metallurgical use higher shares and energy applications growing

Niobium is considered a CRM in all lists

23

Sorce: Blengini, G.A. Presentation to the EU Brazil Dialogues final report. April, 2021.

Is Niobium a rare metal ?

There are 48 Nb minerals mines/deposits/occurrences in all continents

a)

Nb₂O₅(wt. %)

Nb is strategic for Brazil that operates the higher Nb content mines

itC23

MFA for Ferroniobium and consumption diferences comparing USA and China

Fig. 3. Comparison of AC_{total} relative to $AC_{primary}$ [as relative rate of change in $\% = ((AC_{primary}/AC_{total}) - 1) * 100]$ showing an increased apparent consumption of niobium for the United States when embedded niobium is included, and a general decreased niobium import reliance for China.

Source: D.McCaffrey et al., Resources, Conservation and Recycling (2023)

Source: Study of critical materials' production chains: opportunities and threats of the circular economy (2020)

Main niobium producing companies

Table 9. Major companies producing niob	pium in the world (semi-manufactured.	FeNb production capacity (K t per year)	Prospects
Companhia Brasileira de Metalurgia e Mineração	Ferroniobium Vacuum Grade FeNb and NiNb Oxides: high purity, optical grade, niobic acid (HY-340) and ammonium niobium oxalate (ANO) Niobium metal: reactor-grade, commercial-grade, RRR superconductor grade, and niobium zirconium	150	CBMM 50% capacity expansion 2021. Is investing 40 million US\$ in more than 300 R&D projects.
CMOC International Brazil NIOBRAS	Ferroniobium	9	CMOC Niobras improving Nb recovery from hard rock and from phosphate tailings. It is the 2nd phosphate minerals producer in BRA.
Niobec Nb Une compagne de magrès resources	Ferroniobium	?	Producing arounf 8% of the total Nb world output (USGS, Minerals Yearbook, 2023)
* тавоса	Ferrotantalum & Ferroniobium	?	Larger Sn (tin) and Ta (tantalum) producer in Brazil

Source: Study of critical materials' production chains: opportunities and threats of the circular economy

Why is Niobium strategic for Brazil ?

FERRONIOBIUM IS AROUND 60 % OF FERROALLOYS EXPORTS

(Brazillian metallurgical sector yearbook, 2021)

PRODUTOS / PAÍSES EXPORTADORES PRODUCTS / EXPORTING COUNTRIES	TONELADAS <i>TONS (t)</i>	10 ³ US\$ FOB	PARTICIPAÇÃO <i>SHARE</i> US\$ FOB (%)
5. FERROLIGAS ESPECIAIS / SPECIAL FERROALLOYS	107.027	1.615.100	#REF!
5.1 Fe Nb	70.785	1.497.420	92,7
. China / <i>China</i>	28.063	588.490	36,4
. Países Baixos / Netherlands	15.851	338.248	20,9
. Estados Unidos / United States of America	6.278	133.286	8,3
. Singapura / <i>Singapore</i>	5.639	118.319	7,3
. Japão / <i>Japan</i>	3.770	89.992	5,6
. Outros Países / Other Countries	11.184	229.085	14,2

ALL FERROALLOYS :

TOTAL / TOTAL (1+2+3+4+5)	629.551	2.627.904	82,7
. China / <i>China</i>	164.784	997.029	37,9
. Países Baixos / Netherlands	41.156	364.034	13,9
. Estados Unidos / United States of America	77.435	260.981	9,9
. Japão / <i>Japan</i>	57.876	178.676	6,8
. Outros Países / Other Countries	97.154	371.577	14,1

Fonte / Source: COMEXSTAT-ME.

(*) AC: Alto carbono / High carbono.

Niobium circularity is low

0.14 for generic Nb and 0.11 for Nb in steels for transportation based on EU mass flow analysis (Deloitte, 2015)

		Material (Dynam	Circularity Indicator ic Modelling Tool			Material Dyna n	Circularity Indicator nic Modelling Tool
AN APPROACH TO MEASURING CIRCULARITY		Drag the sliders to change input values and see how the MCI changes!		AN APPROACH TO MEASURING CIRCULARITY		Drag the sliders to change	input values and see how the MCI changes!
	Reused Recycled Recycling efficiency Lifespan	Feedstock	Destination after use 0% \$5% 3% \$0% 50% \$50% 1.0 x industry average		Reused Recycled Recycling efficiency	Feedstock	Destination after use 0% 0% 0% 6% 1.0 x inductor avorage
	Functional units	< >	1,0 x industry average		Functional units	< >	1.0 x industry average
MCI = 000				MCI = 000			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ELLEN MACARTHUR FOUNDATION	MATE		Lbe .	ELLEN MACARTHUR FOUNDATION		RANTA	<u>16</u> e
Computation of the MCI:	V W ₀ W _F W X f(X) LFI	0,97 0,95 0,03 0,00 0,97 1,00 0,90 0,96 0,14		Computation of the MCI:	V Wd Wr W W X f(X) LFT	1,00 0,67 0,00 0,31 0,83 1,00 0,90 0,99	

Source: Study of critical materials' production chains: opportunities and threats of the circular economy

Evolution of Brazilian policy on strategic minerals

23

Brazillian list of Strategic Minerals

23

Mineral resources that the country depends on its supply to important economic sectors							
Sulfur	Phosphate	Potassium	Molybdenum				
Mineral resources intended for use in high-tech products and processes							
Cobalt	Copper	Tin	Graphite				
Platinum group	Lithium	Niobium	Nickel				
Silicon	Thallium	Tantalum	Rare Earths				
Titanium	Tungsten	Uranium	Vanadium				
Mineral resources that the country has competitive advantages and are essential for the economy							
Aluminum	Copper	Iron	Graphite				
Gold	Manganese	Niobium	Uranium				

Some final news and comments regarding critical minerals and niobium

- Brazilian Ministry for Mines and Energy set an agreement with USGS to elaborate a national critical minerals list.
- Brazillian new industrial development plan will focus on reindustrialization : new materials and goods local production fostered by abundant renewable energies and raw materials domestic supply,
- ✓ Brazilian Ministry for Science, Technology and Innovations is investing US\$ 6,6 million in a new laboratory devoted to graphene and niobium (GRANIOTEC)
- The upcoming signature of the EU Mercosur free trade agreement will offer much more opportunities for investing in new mining and processing projects in South America.

A Punição da Arrogante Niobe por Diana e Apolo, por Pierre-Charles Jombert, École nationale supérieure des Beaux-Arts, 1772

Source: Wikipedia

THANK YOU FOR THE KIND ATTENTION

Geography of Control? A Deep Dive Assessment on Criticality and Critical Materials Supply Chain

Lille, 16th February - IRTC Conference 2023

ACADEMIC BACKGROUND

Executive Course in Strategic Affairs LUISS School of Government Italian Society for International Organization (SIOI) **PhD Summer School in Critical Raw Materials** EIT Raw Materials & Politecnico di Milano **Course in Risk Management (Energy & Metals) -** ongoing Politecnico di Milano - School of Management

The opinions and views that follow are only **personal**.

CURRENT POSITIONS

Editorial Research Assistant at Fondazione Eni Enrico Mattei (FEEM) Independent Analyst for Italian think tanks and journals

MA in Sustainable Development, Geopolitics of Resources and Arctic Studies

Introduction

1. Methodology & Data 2. Case study: lithium

Concluding remarks

Disclaimer: this study is currently an independent and not yet final assessment (*working paper* out in spring 2023)

Lille, 16th February - IRTC Conference 2023

- The new global context may require new or newly applied **indicators** for Criticality Assessment Methodology.
- The energy transition (as well as digitalization) highlight that CRMs are and will be increasingly economically important (DERA, 2021), but we need to better assess their **geopolitical weight**.
- The US-China tech competition show us that **interdependence** is perceived as a risk as much as opportunity to strike back (e.g. semiconductors/rare earths).
- If interdependence can be **weaponized** in the context of highly globalized networks, should criticality assessment be expanded on **supply chains**? How?

1 Introduction

Lille, 16th February - IRTC Conference 2023

...a deeper supply chain than what we see on the surface...

Alessandro Aresu in conversation with Paolo Cerruti Northvolt COO & co-founder

2 | Introduction

My purpose: Looking for the *deep supply chain...*

My research question: How do we measure or track this "depth" in the context of criticality assessment methodology?

Source: European Commission, 2020

3 | Introduction

My assumption: "Geography of extraction is not geography of production nor geography of control..."

Why?

"...because "control" is not a linear continuous function of the percentage of extraction or production shares held"

Leruth L., et. al., (2022)

1 Methodology & Data

Source of Control (SOC)

Source of Control (SOC)*

"[...] it measures the ability of a **direct or indirect shareholder** to change the outcome of a vote by forming potential voting coalitions with other shareholders. It allows for the computation of a single index **measuring the level of control** that the shareholder could exercise over a company. [...] It discriminates between financial links that are associated only with portfolio investments and those that can translate into significant control. It also addresses the top weaknesses of the indices traditionally used by researchers to measure **concentration** (such as the **Herfindahl indices**, which sum squared proportions of shares held by shareholders). Those weaknesses include the (incorrect but widely held) notion that diluting the capital of a company necessarily reduces the level of control held by the top shareholder."

2 | Methodology & Data

*SOCs are assessed through data processed using **ZENO-Indices**, a proprietary software.

Why it is important?

It adds a potential *indicator* to assess *who* control production regardless *where* the extraction occur.

	PERSPECTIVE	ENTITIES	
X	Geographical location	Countries	Share (%) in glo
Y	Market production	Companies	Sha
Ζ	Owners of operations	Shareholders	S

SOCs are, thus, a **vertical assessment of control** (from shareholders to operating companies)...

3 | Methodology & Data

MEASURE

obal resources/reserves or extraction re (%) in global production ource of control (SOCs)

Why it is insightful?

It stress that countries of **incorporation** of CRMs mining operations are not necessarily the countries *where* extraction geographically occur. This observation lead to revaluate the widespread notion that criticality is linked to a sort of "geological determinism", that implies control as a function of fixed extraction.

In terms of **quantitative analysis**, this is a significant contribution to the degree of "production concentration" as traditionally assessed because it allows to de-territorialize HHI indicators while considering private held companies or SOEs (here referred *corporate entities*), not countries, the variables in the geography of extraction.

But there is a problem, a missing link...

4 | Methodology & Data

Leruth L., et. al., (2022) "Green Energy Depends on Critical Minerals: Who Control the Supply Chains?"

My assumption: "Geography of extraction is not geography of production nor geography of control..."

Why?

Because owners of operating companies are not only empowered by controlling mining assets. Their controlling shares are a premium if they can leverage them in terms of supply chain control.

5 | Methodology & Data

In terms of **qualitative analysis**, this refers to a **horizontal assessment of control** (from upstream to midand downstream) that is essential to understand current and future developments in the critical raw materials industry. Therefore, the obvious question is therefore: can we measure the company's degree of supply chain control? A potential indicator could be the level of **business integration** between mining and refining/processing activities.

We can say that owning mining assets (SOCs) is the **necessary but not sufficient condition** in the framework of this study. What is needed and missing is a long-term orientation toward supply chain dynamics.

6 | Methodology & Data

7 | Methodology & Data

FRAMEWORK:

Deep Supply Chain

Assessment

Operating Company

Vertical Control (ownership)

Downstream Tiers

Two preliminary and roughly assessment on *ownership** and *supply chain control*.

Quantative data

1. Extraction output (metric tonnes**)
 2. Refining output (metric tonnes**)

Source: Company Reports, USGS, Wood Mackenzie (2021)

* No access to ZENO Indices (proprietary)
** If not otherwise specified

8 | Methodology & Data

Qualitative data

1. Ownership
 2. Offtake agreements

Source: Company Reports, Dow Jones (2021)

Lithium

Resources

Reserves

1 **Case study: lithium**

Perspective X

Extraction

Mined lithium output market share by mine operator (2021)

Talison (Greenbushes) 38%

Mineral Resources / Ganfeng (Mt. Marion)

Perspective Y

Mined lithium output market share by corporate control (2021)

GANFENG LITHIUM CO. OVERSEAS INVESTMENTS								
PROJECT	TYPE	ACQUISITION YEAR	EQUITY OWNERSHIP	COUNTRY	AGREEMENT	LITHIUM RESOURCES (million tonnes, LCE)	COUNTRY SHARE*	GLOBAL SHARE*
Avalonia	Spodumene	2012	55% in the JV	Ireland	N/A	Exploration	n.c	
Mariana	Brine	2014	86.25%	Argentina	Offtake of the lithium products based on proportion of equity interests in the project	8,12	8.1%	
Mt. Marion	Spodumene	2015	50%	Australia	Offtake of 49% of total lithium concentrate product (own consumption), while the rest (51%) processed and marketed by Ganfeng (selling to customers)	2,42	6.2%	
Pilgangoora	Spodumene	2017	6.9% in Pilbara	Australia	No more than 160kt of 6% lithium concentrate per annum from PP1; no more than 150kt from PP2 after completion		22.4%	USGS (2022)
Cauchari Olaroz	Brine	2017	51% in the project and 16.7% in Lithium Americas	Argentina	Offtake rights to 76% of the lithium products from PP1 (40kt LCE)	24,58	24.3%	
Sonora	Lithium clay	2019	50% in the project and 25.8% in Bacanora	Mexico	Offtake of 50% lithium products in the PP1 and entitlement to increase the offtaking 8, rights to 75% in the PP2		97.4%	
Goulamina	Spodumene	in progress	50% in the project	Mali	50% output offtaken by Ganfeng with option to increase ratio to 100%	3,89	100%	
				TOTAL		56,54		~12%**

Source: Ganfeng Lithium, own research

*Data on resources refer to 2021, collected from USGS (2022) and roughly converted in lithium carbonate equivalent (LCE) **This data is an estimated control of potential lithium resources. Whether these projects will become commercial viable while contributing to Ganfeng feedstocks it remain to be seen.

3 | Case study: lithium

Concluding remarks

- 1. How to include SOCs in the criticality assessment through the SR Index (production) concetration)?
- 2. How to assess supply chain control? A tentative integration of WGI, Import Dependence and trade restrictions indicators?
- **Proposal:** using the IEN Framework tailored for raw materials criticality assessment

Ding, J., Dafoe, A., "The Logic of Strategic Assets: From Oil to Al", Security Studies, Vol. 30, No. 2 (2021), pp. 182-212

1 **Concluding remarks**

Thank you for your attention!

e-mail - alberto.prinacerai@feem.it Linkedin - Alberto Prina Cerai Twitter - @aprinacerai

Research & Innovation

Carbon neutral energy transition: "From Emissions to Resources"

Jan Mertens, Fanny Maigne, Olivier Sala, Peter Verwee, Luc Goossens and Elodie Lecadre

IRTC 2023 – Raw Materials for a Sustainable Future 15-17 February 2023 – Lille, France Jan Mertens Chief Science Officer @ ENGIE R&I Visiting Professor @Ugent

ENGIE & ENGIE Research

EADNGTHEENERGY

TRANSITON

engie

ENGLE's ambition covers all 3 scopes, including direct emissions as well as all indirect emissions

Proposed net zero ambition by 2045 covers all scopes including procurement and upstream emissions, but intermediate targets are limited to energy generation and sales, the two most important sources of emission

Pilot projects with academic, industrial and government partners are important to co-develop, test and demonstrate new solutions

Pilots are key for ENGIE and a large part of the research budget

From 'emissions' to 'resources'

The energy transition will imply a booming need for critical raw materials: from emissions to resources

• Today's dependance on fossil fuel will switch towards dependance on minerals used in clean technologies.

Mineral intensity of selected clean and fossil energy technologies

Source : IEA, Securing Clean Energy Technology Supply Chains, 2022. KU Leuven, Metals <u>fo</u>r Clean Energy, 2022.

Example: Amount of material needed for the expected 2030 TW_p yearly PV market will impact the worldwide production of many materials:

- PV reached the 1 TerraWatt peak cumulative installation in 2022! This is expected to increase to 1 TWp yearly installation by 2030.
- Although Silver is not considered a critical material by the EU it could be crucial for the PV supply chain since very important for the cost of manufacturing PV!

IMEC IMO-IMOMEC

8

Engie's ambitions on solar, PV and hydrogen are very significant in a highly fragmented market: critical materials are an important topic of concern

IEA, 2021 alerts on a mismatch between the need of critical minerals to meet our

climate ambitions and the predicted supply of some important critical metals

Meeting primary demand in the SDS requires strong growth in investment to bring forward new supply sources over the next decade

Committed mine production and primary demand for selected minerals

IEA. All rights reserved.

Notes: Primary demand is total demand net of recycled volume (also called primary supply requirements). Projected production profiles are sourced from the S&P Global Market Intelligence database with adjustments to unspecified volumes. Operating projects include the expansion of existing mines. Under-construction projects include those for which the development stage is indicated as commissioning, construction planned, construction started or preproduction. Mt = million tonnes.

Source: IEA analysis based on S&P Global (2021).

IEA, WEO special report, 2021. The Role of Critical Minerals in Clean Energy Transitions.

On top of the criticality, environmental and social impact of the raw materials themselves, the dependence on few countries in which the processing is located is even higher!

0% 60% 80% 100% 20% 40% Copper Chile Peru Nickel Indonesia Phil. Rus. Russia Australia Cobalt Dem. Republic of Congo U.S. Rare earths China Myan. Lithium Australia Chile

Clean energy metals mining location

Clean energy metals processing location

Source : IEA, Securing Clean Energy Technology Supply Chains, 2022

Now what can we do?

1. Increase material			Materi	ial Intensity	v ("top/GW")			
Do the same with less material		<u>Main Critical</u> <u>Raw Materials</u>	Reduction (2020=100)		Key drivers		GW Capacity Trend – Global (IEA)	
	Li-Ion Batteries	Cobelt Lithium Graphite Manganese ^o Nickel ^o	2030 - 2050 1. 20 1. 34 3. 18 4. 13 5. 14 7	o Co te	ombined effect from improved material use and echnology scaling	2021 X	2050 	
	Wind	1. REE 2. Copper	1. 90 35 2. 65 22	o Al int	Ithough REE reduction potential already tapped to, some further reduction potential remains		→ ×7	
	PV	1. Gallium 2. Germanium 3. Indium 4. Silicon 5. <u>Silver</u> *	1. 50 17 2. 60 21 3- 10 5 4- 70 19 5- 70 16	o Sil efi te	ilicon and silver reduction due to further ficiency improvement on current silicon-PV chnology		→ (12	
	Water electrolyzer #	 Graphite Iridium Platinum Titanium Nickel* 	1. 35 2. 23 3. 47 4. 32 5. 32	o Pla etc sca	atinum Group Metals(5) and titanium, indium, c. can still see major reductions due to large aling potential of electrolysis 1×20 21×40 41×60 61×80 81×100	×	450	
	#For Electroly	sis, the material intensity reduction	n is for 2040 versus 2020 § PGM include Plat	tinum, Iridiium, ruth aw materials (EU ai	henium, rhodium, palladium, osmium 1020 CRM} but with high value impact for the technology		32	

Material supply chain

Sources : EUC, Critical raw materials for strategic technologies and sectors in the EU, 2020. IEA, The role of critical minerals in clean energy transitions, 2021 "DERA, Mineralische Rohstoffe für die Wasserelektrolyse, 2022

Now what can we do?

	Material supply chain	
1. Increase material efficiency	2. Re-use and Recycle	Bauxite EU Commission: Study on the EU's list of Critical Raw Materials (2020) Silicon metal Scandium Phosphorus Share of recycled material as
Do the same with less material	Second life where possible or else recycle	Niobium compared to overall material Lithium Indium Indium needs - EU* Dysprosium Gallium
	NEW ENERGIES 10/02/2020 A "Second Life" For Electric Car Batteries: Award-Winning	Lantnahum Neodymium Cerium Fluospar
	Innovation For The Energy Transition	Borates Vanadium Germanium Natural graphite
	f ୬ in ⊠	Terbium Praseodymium Ruthenium Magnesium
		Iridium Titanium Cobalt Platinum
		Rhodium Palladium Cadmium Yttrium
		0% 5% 10% 15% 20% 25% 30% 35%

*<u>Definition</u> : Ratio of recycling of old scrap in the EU to the EU supply of raw material.

Now what can we do?

1. Increase material efficiency	2. Re-use and Recycle	3. Substitution
Do the same with less material	Second life where possible or else recycle	Replace with earth abundant material
	 Silicium wafer Silver paste Copper paste SiN_x layer Indium tin oxide layer 	Redox flow batteries All iron-based and organic redox flow batteries have no critical material issue and are scalable for large-scale ESS.
Busbar Finger Finder Finder Substitution of silver by Copper in PV cells		Source/Load Stack Cells Electrolyte Electrolyte Flectrolyte Flectrolyte Flectrolyte Pump

Now what can we do?

	Manufacturing supply chain		
1. Increase material efficiency	2. Re-use and Recycle	3. Substitution	4. Relocate processing and manufacturing chain
Do the same with less material	Second life where possible or else recycle	Replace with earth abundant material	Bring refining and production to EU, US,

Localizing clean energy manufacturing, US and Europe

Impact incentives for local PV manufacturing cost - US and Europe

Source : McKinsey, Building a competitive solar-PV supply chain in Europe, 2022.

Conclusion

Critical Raw Material access is crucial for ENGIE's strategy since it may hinder the energy transition, but technical and political solutions exist to mitigate the risks

Technical and political solutions exist and are kicking-in:

- 1. Increase material efficiency
- 2. Re-use and recycle
- 3. Substitution
- 4. Relocate processing and manufacturing chain

Materials widely used in energy technologies (Volker et al., 2015)

IRTC Conference, Lille, February 16 2023 Raw materials for a sustainable future

Ukraine, Russia, Belarus and global mineral supply

Magnus Ericsson and Olof Löf

Agenda

- O Russian, Ukrainian and Belarussian production of metals and minerals
- O Russian exports of metals and minerals
- O EU's import dependence on Russia and Ukraine
- O Results of sanctions against Russia and effects of destruction in Ukraine
- O Conclusions
- O The most important Russian and Ukrainian mining companies

Russian, Ukrainian, Belarussian production of metals, minerals

Russian mine production

Metal/ mineral	Value \$" 2021	Russian share of world total	CRM
Coal	56.6	5.4%	
Gold	17.65	9.1%	
Iron ore	15.50	4.3%	
Palladium	7.21	40.9%	х
Potash	6.64	16.3%	
Copper	5.84	3.9%	
Diamonds	4.12	30.4%	
Nickel	2.92	8.4%	
Asbest	1.58	64.4%	
Rhodium	1.42	7.7%	
Silver	1.10	5.2%	
Phosphate rock	1.04	6.1%	
Platinum	0.75	11.6%	х
Zinc	0.58	2.5%	
Lead	0.48	4.7%	
Vanadium	0.28	22.7%	х
Kaolin	0.24	6.2%	
Antimony	0.19	16.9%	Х
Bauxite	0.18	1.6%	x
Chrome	0.15	1.8%	
Uranium	0.14	5.3%	
Magnesium	0.13	1.4%	х
Cobalt	0.09	4.5%	x
Molybden	0.07	0.7%	
Tin	0.07	0.8%	

Metal/ Mineral	Value \$" 2021	Russian share of world total	CRM
REE	0.06	1.2%	х
Tungsten	0.05	3.1%	х
Salt	0.04	0.3%	
Talk	0.04	2.0%	
Gips	0.03	2.3%	
Fältspat	0.03	0.9%	
Bor	0.03	3.8%	х
Graphite	0.03	1.5%	х
Tantalum	0.01	1.4%	х
Zircon	0.01	0.5%	
Mercury	0.00	1.8%	
Tellurium	0.00	8.0%	
Svavel	0.00	1.0%	
Flourspar	0.00	0.1%	
Mica	0.00	1.6%	
Bismuth	0.00	1.4%	х
Aluminium	*	5.8%	
Gallium	*	6.3%	
Germanium	*	6.3%	х
Baryte	*	0.0%	х
Hafnium	*	0.5%	х
Silicon		8.6%	
Niobium		1.2%	x
Indium		0.5%	
Titanium (sponge)	*	13%	х

*Biproduct and/or extracted from steel production "Billion USD

Billion USD

R M Consulting G

Ukrainian mine production

Metal/ mineral	Vale \$" 2021	Ukraine share of world total	CRM
Iron ore	11.97	3.3%	
Coal	3.3	0.3%	
Manganese ore	0.36	3.3%	
Kaolin (clay)	0.29	7.5%	
Titanium	0.24	7.7%	х
Salt	0.12	0.7%	
Uranium	0.04	1.5%	
Zirkonium	0.03	1.6%	
Graphite	0.02	1.3%	x
Gipsum	0.01	0.8%	
Feldspar	0.00	0.1%	
Hafnium	*	1.6%	x
Silicon	*	0.7%	

*Biproduct and/or extracted in smelters/refineries "Billion USD

Belarussian mine production

Metal/ mineral	Value \$" 2021	Belarus' share of world total	CRM
Potash	7,20	18%	
Salt	0,14	0,9%	

"Billion USD

Billion USD

Metal/mineral	Value of import from Russia (MUSD)	Russia's share of EU's import
Vanadium	56	85%
Potash*	461	54%
Nickel	1693	40%
Palladium	2600	36%
Met. Coal	2213	36%
Titanium	465	18%
Chrome	38	17%
Diamonds	1393	16%
Gold	17099	16%
Platinum	578	16%
Phosphate	282	15%
Aluminium	2279	14%
REE	11	13%
PGM other	385	13%
Iron ore	1098	12%
Copper	1200	9%
Silver	241	8%
Cobalt	17	4%
Zircon**	3	4%
Indium	2	3%
Silicon	31	2%
Beryllium	1	1%
Borate	3	1%

Source: OECD

*Russia & Belarus **Imported from Ukraine R M Consulting G

EU imports from Russia

EU-import	2021	10 months- 2022	Weight 2021	Weight 2022
Aluminium MUSD	2658	2680	N.A.	N.A.
Aluminium %	8.3	7.5		
Palladium MUSD	1732	1128	21.6 t	14.7 t
Palladium %	34.2	31.1		
Nickel MUSD	2509	2758	N.A.	N.A.
Nickel %	42.3	44.4		
Gold MUSD	672	598	11.5 t	10.0 t
Gold %	3.3	3.8		
Iron ore MUSD	2069	400	10.5 Mt	2.4 Mt
Iron ore %	12.6	4.0		

Palladium EU import 2021: 5925 MUSD

Potash EU import 2021: 1077 MUSD

Consequences: short term

European energy crisis is affecting smelters and refineries in Europe, suspensions, closures

So far limited effects on trade. LME still trading with Russian metals

Legally binding long term contracts make it difficult to stop imports from Russia.

The Russian nickel production is important for the EU. Nornickel operates a nickel refinery in Finland where nickel from Russia is refined.

Palladium is used mainly in auto catalysts. This is probably a use where it is most difficult to replace Russian metal.

Ukraine is an important producer of high quality iron ore products suitable for the production of green steel. Ukrainian company Ferrexpo's production has been reduceed and its future is uncertain.

There are pellet producers also in Russia for example Severstal's mine and plant in Kostamus Karelia. Their export via a Finnish port has been stopped.

Gold imports have been reduced into EU/UK. Switzerland gold imports increased with 50% in 2022.

Consequences: long term

European smelting/refining industry

A serious threat of close down of an important industry in the EU. Opportunities in Nordic countries.

Prices

Increased freight costs when ores have to be shipped longer distances than from Russia.

Direct investments into mining

Possibly large user of metals might get interested in investing directly into mines in countries with low sovereign and economic risks. So far few such deals but they might come. All new mines, wherever they are located, must be competitive at present world market prices.

Environment

If production by Nornickel is replaced by mines in other parts of the world CO₂ emissions would increase.

Equipment suppliers

Equipment suppliers will lose an important market in Russia which is a major underground market. The effectiveness of Russian mines could gradually decrease if cut off from top class equipment.

Opportunities for developing countries

High quality deposits in emerging economies might be developed to replace Russian exports.

Magnetic resonance imaging

THE SWEDISH-FINNISH CHEMIST JOHAN GADOLIN GAVE NAME TO THE ELEMENT GADOLINIUM

Conclusions 1

Russian metal production

Russia's importance as a mining country and exporter might slowly decline.

The role of the oligarchs

Oligarchs are major owners of Russian mining and smelting companies. How would a decrease in profits form these companies influence the oligarchs and their relation to the Russian regime? Russian companies

The major Russian mining companies started to modernise after the collapse of the Soviet Union. This process has to a large extent ground to a halt undeer Putin. India and China might become the only major countries willing to do business as usual with Russia.

International experts to Russian listed companies are withdrawing and they will lose competences. Investments into Russia

Chinese investors might be willing to spread their investment and target also Russia. But Chinese investments into mining outside China is slowing down and interest is focused on SE Asia, Africa, Latin America.

Aluminium

Russia is however highly import dependent on alumina imports. Rio Tinto has stated they will stop bauxite deliveries also to Rusal's alumina plant in Ireland, which could affect also delveries to Russia.

Conclusions 2

Sanctions on Russian metals and minerals exports and imports should be feasible and would affect Russia more seriously than the EU.

There are alternative sources of imports for most metals Russia produces.

The role of China should be monitored closely.

The war in Urkaine puts a pan-European mineral intelligence centre high on EUs agenda.

Companies in a global comparison (billion USD)

Company	Country	Main metal	Value mine production* 2020
ВНР	UK/Australia	Iron ore	44
Vale SA	Brazil	Iron ore	38
Rio Tinto Group	UK	Iron ore	37
Nornickel	Russia	Nickel/PGM	12
Belaruskali	Belarus	Potash	7.2
Uralkali	Russia	Potash	5.5
Polyus Gold	Russia	Gold	5.2
Evraz Group SA	Russia	Iron ore	4.4
Metalloinvest	Russia	Iron ore	4.4
Alrosa	Russia	Diamant	4.1
Metinvest	Ukraine	Iron ore	3.3
Polymetal International Plc	Russia	Gold	2.8
NLMK	Russia	Iron ore	2.0
Ural Mining and Metallurgical Company	Russia	Base metals	2.0
Severstal	Russia	Iron ore	1.9
Nord Gold	Russia	Gold	1.9
United Company Rusal Plc	Russia	Aluminium	1.8
Ferrexpo	Ukraine	Iron ore	1.2
Phosagro	Russia	Phosphate	0.9
Atomenergoprom (Rosatom)	Russia	Uranium	0.1
KGHM Polish Copper	Poland	Copper	3.5
LKAB	Sweden	Iron ore	2.9
Boliden	Sweden	Base metals	1.9

R M Consulting G

Russian mining companies

NORNICKEL	Nornickel is the world's second largest producer of nickel (both concentrates and refined metal). The world's largest producer of palladium. Also produces copper, platinum and cobalt. The mines are located in Siberia and on the Kola Peninsula. Controlled by Vladmir Potanin and Oleg Deripaska. Listed in Moscow.
🔆 POLYUS	POLYUS Gold is the world's third largest gold producer with 81 tonnes of gold 2020. All mines are located in Russia. Controlled by Said Kerimov. Listed in Moscow and London. The company was spun off from Nornickel just over 10 years ago.
■EVRAZ	Evraz is Russia's largest steel and iron ore company. Its largest individual owner is the oligarch Roman Abramovich. Produced 14 Mt of iron ore in 2020. The company is listed on the London Stock Exchange.
Metalloinvest	Metalloinvest is a steel and iron ore company and is Russia's largest iron ore producer with about 40 million tonnes annually, including pellets and so-called HBI (hot briquetted iron) a steel raw material. The company is not listed on the stock exchange.
	Polymetal is one of the world's top 10 largest gold companies. They control 8 gold mines in Russia and 1 in Kazakhstan. The production amounts to 44 t gold and 6 300 t silver. Listed on the London Stock Exchange. One of the largest owners is Alexander Nesis.
	Ural Mining and Metallurgical Company (UMMC) is one of the largest Russian mining producers of copper, zinc, coal, gold and silver. UMMC also produces lead, selenium, tellurium, cadmium and indium. Listed in Russia. The largest owner is Iskander Makumodov.
Severstal	Severstal is primarily a steel company but also a large producer of iron ore and iron ore pellets. All mines are located in Russia. Severstal is listed on the London Stock Exchange where the majority of the shares belong to the oligarch Alexei Mordashov.
RUSAL	United Company RUSAL is the world's second largest aluminum producer. A fully integrated company with bauxite mines in Russia, Guinea, Guyana and Jamaica. Listed in Moscow and Hong Kong with Oleg Deripaska as major owner. Owner of Swedish Kubikenborg Aluminum (KUBAL) with aluminum smelter in Sundsvall.

R M Consulting G

Russian and Belarussian mining companies

Uralkali is one of the world's largest producers of potassium salts for fertilizer production. The company is listed on the Moscow Stock Exchange and has Dmitry Mazepin as a major shareholder.

Nordgold is a gold company with operations in West Africa, Kazakhstan and Russia. Produced more than 31 tonnes of gold in 2020. Marina Mordashova is the largest shareholder with more than 50%. The company is based and registered in the United Kingdom.

Phosagro mines phosphates (phosphate rock) and produced 12 million tonnes by 2020. The company is one of the world's largest integrated fertilizer producers. Has an international board. Is listed on the Moscow Stock Exchange.

Belarussian companies

Belaruskali is one of the world's largest potash companies. 100% state controlled. 7.4 million tonnes were produced 2020 to a value of about 7 billion USD. Belaruskali accounts for 18% of global production.

IRTC 2023 – Raw Materials for a Sustainable Future 15-17 February 2023, Lille, France

Paradoxes in material criticality: revealing the multifaceted nature of the phenomenon

Yulia Lapko, Politecnico di Milano (IT) David Peck, TU Delft (NL)

the European Union CiRCLETECH 101079354 Funded by the European Union - Twinning partnership to deliver enhanced networking for circular technological and socio-economic impact, raising research excellence and strengthening management capacity.

How we think it is: Identification and Mitigation of material criticality as a dynamic interdependent system

© Yulia Lapko, © David Peck

POLITECNICO MILANO 1863

Where we really are:

Identification and Mitigation: critical appraisal

Regardless of prominent progress in the field, it is possible to say that material criticality remains a **dynamic black box**.

Urgency and importance of criticality push the investigation towards solving the problems before the phenomenon is fully understood, thus putting under question the efficiency and effectiveness of taken actions

POLITECNICO MILANO 1863

Paradox perspective

Paradox: contradictory yet interrelated elements (dualities) that exist simultaneously and persist over time

Dualities (A and B) – Opposites that exist within a unified whole

- Internal boundary creates distinction and highlights opposition
- External boundary encourages synergies by constructing the unified whole

(Smith and Lewis, 2011)

Paradoxes of Identification: significance of impacts

Conflicting prioritisation of short-term vs long-term impacts Economic Long-term impacts impacts Conflicting prioritisation of global impacts (e.g. Local Global climate change) vs local impacts (e.g. human impacts impacts rights, pollution) Short-term **Environmental &** impacts social impacts Conflicting prioritisation of economic impacts and environmental & social impacts

POLITECNICO MILANO 1863

Paradoxes of Identification: multiple organisational levels

Conflicting perception/assessment of criticality of a certain material within an organisational layer, e.g. company in Industrial Sector A (technology A) vs company in Industrial Sector B (technology B)

Conflicting perception/assessment of criticality of a certain material across organisational layers, e.g.: Company vs Country

POLITECNICO MILANO 1863

Paradoxes of Identification: multiple organisational levels

Paradoxes of Mitigation

Incremental innovations (e.g. material efficiency) VS Radical innovations (e.g. new technology that enables substitution) *Feasibility (speed) of implementation VS impact on criticality state*

Independent (e.g. material efficiency) VS integrated, systemic efforts (e.g. Circular Economy)

Individual VS collective (aligned*) efforts

* No one is responsible for criticality today

Paradoxes of Mitigation

Conflicting short-term and long-term mitigation strategies

Deployment of strategies that favour short-term conditions may have detrimental impact in longterm (and vice versa).

Other relevant considerations:

- Time for a strategy to be developed and deployed
- Path dependence
- Proactive vs reactive action
- Problem shifting to the 'future'

Paradoxes of Mitigation: multiple organisational levels

Misalignment of strategies is problematic because it diminishes overall efficiency and effectiveness of mitigation efforts (and thus resilience of an industrial system), leads to problem shifting (e.g. to another SC position, industrial system, country)

Conflicting mitigation strategies within an organisational layer, e.g. company in Industrial Sector A (technology A) vs company in Industrial Sector B (technology B)

Conflicting mitigation strategies across organisational layers, e.g.: Company vs Country

© Yulia Lapko, © David Peck

Paradoxes of Mitigation: multiple organisational levels

© Yulia Lapko, © David Peck

Conclusion

If we are to open the black box of material criticality, we need to embrace the phenomenon in its full complexity, and paradox perspective can assist with that

Thank you

Yulia Lapko* yulila.lapko@polimi.it *Corresponding author

POLITECNICO **MILANO 1863** SCHOOL OF MANAGEMENT

David Peck d.p.peck@tudelft.nl

Please, reach us out if you would like to discuss paradoxes of material criticality and their management!

CIRCLETECH

the European Union CIRCLETECH 101079354 Funded by the European Union - Twinning partnership to deliver enhanced networking for circular technological and socio-economic impact, raising research excellence and strengthening management capacity.

© Yulia Lapko, © David Peck