Nickel supply: primary metallurgical processing capacity does not satisfy changing demand

2023 International Round Table on Materials Criticality

Jamie Faubert Dr. Steven Young

February 16th, 2023

Nickel Overview | Current and future applications

Current Applications

2020 Production: 2.51 million metric tonnes

Source: Wood Mackenzie, Nickel Institute

Future Applications

2040 Expected Demand: 6.0 million metric tonnes

2.3x

Nickel Overview | Mineral supply chain

Associates Metals: Co

Rock Type: Soft Rock

Process Type: Hydro & Pyrometallurgical

Applications: Steel, Batteries, Plating

Research Gap | Bottom-Up Facility-by-Facility

Reference: Mudd (2009, 2011), Mudd & Jowitt (2014, 2022), Heijlen et al. (2021)

Research Gap | Target groups in OEM organizations

Procurement

Sourcing Available nickel suppliers

Availability Quality and capacity of materials

Engineering

Environmental

Sustainability Carbon footprint, ESG

Research Gap | Research questions

Ore & Product Bifurcation

Critical Mineral

Opaque Supply Chain What are nickel supply chains?

Geopolitical Risk Where are nickel facilities located?

Net Zero Goals

New Mines √ New Refineries?

Carbon Neutral Operations Who has environmental commitments?

Limited Refining Capacity How much capacity is available?

Methods and Data | Data collected

Reference Year

2021

Historical Data up to 2000

Non-NPI, Partial Inclusion of FeNi

Scope

Global Scope

Data Quality

Secondary Sources

Data Points Collected

- Ownership
- Location
- Development History
- Facility Type
- Process Type
- Material Recovery
- Nickel Capacity
- Nickel Products
- Nickel Product Quality
- Nickel Product Application
- Nickel Recovery Rate

- Historical Nickel
 Production
- Cobalt Production
- Copper Production
- By-Products
- Feed Sources
- Feed Type
- Feed Quality
- Environmental Goals
- Environmental Impact
- Recycling Plans
- Expansion Plans

S Ct

Methods and Data | Data sources

Corporate Annual, Financial, and Sustainability Reports

Academic Articles

Assessing the adequacy of the global land-based mine development pipeline in the light of future high-demand scenarios: The case of the battery-metals nickel (Ni) and cobalt (Co).

Wouter Heijlen^{a,*}, Guy Franceschi^b, Chris Duhayon^c, Kris Van Nijen^c

Industry Reports, News Articles

Countries Fuels & technologies Analysis Data Policies About Q Q

The Role of Critical Minerals in Clean Energy Transitions

^a Tercienco BV, Spijkstraat 185, B-9040, Ghent, Belgium

^b GF Consult BV, Antwerpsesteenweg 644, B-9040, Ghent, Belgium

^c Global Sea Mineral Resources NV, Slijkensesteenweg 2, B-8400, Ostend, Belgium

Methods and Data | Database

A	В	С	D	E	F	G	Н			
<u>т</u> ∠				1						
3	Operation	Primary Owner			Location					
4	Name	Company	Latitude	Longitude	Region	Country	Ownership			
5	Moa JV - Fort Saskatchewan	Sherritt	53.72	-113.19	North America	Canada	Private & S			
6	Vale Copper Cliff Smelter (North Atlantic)	Vale	46.48	-81.06	North America	Canada	Private			
7	Copper Cliff Nickel Refinery (North Atlantic Operations)	Vale	46.45	-81.08	North America	Canada	Private			
8	Long Harbour	Vale	47.42	-53.81	North America	Canada	Private			
9	Clydach Refinery	Vale	51.69	-3.89	Europe (w/out Russia)	United Kingdom	Private			
10	PT Vale Indonesia	Vale	-2.57	121.38	Asia (w/ Russia)	Indonesia	Private			
11	Matsusaka Refinery	Vale	34.60	136.55	Asia (w/ Russia)	Japan	Private			
12	Taiwan Nickel Refining Corporation	Vale	22.66	120.28	Asia (w/ Russia)	Taiwan	Private			
13	Vale Nickel (Dalian) Co. Ltd	Vale	39.09	121.84	Asia (w/ Russia)	China	Private			
14	Korea Nickel Corporation	Vale	35.43	129.34	Asia (w/ Russia)	South Korea	Private			
15	Onca Puma	Vale	-6.57	-51.09	South America	Brazil	Private			
16	Goro	Prony Resources	-22.31	166.90	Oceania	New Caledonia	Private & S			
17	Sudbury INO	Glencore	46.58	-80.81	North America	Canada	Private			
18	Nikkelverk	Glencore	58.14	7.97	Europe (w/out Russia)	Norway	Private			
19	Canadian Copper Refinery	Glencore	45.63	-73.50	North America	Canada	Private			
20	Murrin Murrin	Glencore	-28.77	121.90	Oceania	Australia	Private			
21	Koniambo	Glencore	-21.01	164.73	Oceania	New Caledonia	Private & S			
22	SNNC CO. LTD	Societe Miniere du Sud Pacifique	34.92	127.77	Asia (w/ Russia)	South Korea	Private & S			
23	Nickel West (Kwinana Nickel Refinery)	BHP	-32.25	115.77	Oceania	Australia	Private			
24	Nickel West (Kalgoorlie Nickel Smelter)	BHP	-30.80	121.47	Oceania	Australia	Private			
25	Cerro Matoso	South32	7.92	-75.55	South America	Colombia	Private			
26	Ravensthorpe Nickel Operation	First Quantum	-33.65	120.40	Oceania	Australia	Private			
27	Yabulu Nickel Refinery	Queensland Nickel Sales	-19.20	146.61	Oceania	Australia	Private			
28	Falcondo	Americano Nickel	18.93	-70.36	South America	Dominican Republic	Private			
29	Euronickel Industries	Euronickel Industries	41.44	21.94	Europe (w/out Russia)	North Macedonia	Private			
30	Barro Alto	Anglo American	-15.06	-48.94	South America	Brazil	Private			
31	Codemin	Anglo American	-14.16	-48.34	South America	Brazil	Private			
32	Loma de Niquel	CVM	10.15	-67.12	South America	Venezuela	State			
33	Rustenburg Base Metals Refinery	Anglo American	-25.69	27.33	Africa	South Africa	Private			
• •	Ownership and Development Operation Overview Nickel Cobalt Other Product Source Environmental Data Investment Nickel Products Nickel Product Composition Mines_Mine Mines_Producers_Deposit +									

Results and Analysis | Data overview

Data Points Collected

Companies Analyzed

+5k

31

Facilities Analyzed

Nickel Products Analyzed

42

122

Results and Analysis | Geographic capacity of refined product

Results and Analysis | CY21 operation capacity breakdown

1,607,439 Metric Tonnes of Nickel Refining Capacity (+/- 31,000)

Operating (1,377,849 mt)								Care Mainter (159,59	and nance 90 mt)
			Long Harbour	Youshan Ni	ckel Indonesia	Ambatov	у		
								Yabulu Nicke	Refinery
		Copper Cliff Nickel Refinery							
Jinchuan Nickel Operation			Goro	Fort Saskatchev	van Ramu	P	Rustenburg Base Metals Refinery		Taiwan Nickel Refining Corporation
	Kwinana Nickel Refinenz			-				Vale Nickel	São Miquel
								(Dalian) Co. Ltd	Paulista Refinery R
		Harjavalta Plant			Terrafame		Harima Refinery	Operatin	g? (70,000
			Clydach Refinery	Matsusaka Refinery	Impala Base Metals	PT Halmahera Persada Lygend	a Fukang Refinery		
					Refinery	-			
						Skouriotissa	Jien Nickel	Korea Nickel	Corporation F
Kola Peniunsula	Nikkelverk	Niihama Nickel Refinery	Murrin Murrin	Ravensthorpe Nickel Operation	Sandouville	Marikana Base Metal Refinery	e Nicomet / Refinery	Operating (3 ⁻ Punta Gorda	g? - Unceı 1,000 mt)

Non-FeNi, Non-Smelters Operations (n=42)

ordes Meta Nickel Cobalt acility **tainty**

ipress ickel finery

Bindura Smelter and Refinery

Results and Analysis | Product application breakdown

Results and Analysis | Product application breakdown

99.8-100 Non-FeNi, Non-Smelters Operations (n=42) Unknown

Results and Analysis | Carbon neutral goal

1,125,000

Non-FeNi, Non-Smelters Operations (n=42)

e Intermediate/Refinery

Discussion | Capacity bottleneck

Limited Excess Capacity

New Battery Capacity Required

Insignificant excess capacity currently available

Geographic Distribution

Product Capacity

Products Intended for Steel

Limited number of products intended for batteries

Jamie Faubert: jfaubert@uwaterloo.ca Dr. Steven B. Young: sb.young@uwaterloo.ca

Research Gap | Recycling

Battery recycling: By 2040 recycling and reuse of EV and storage batteries could reduce the primary supply requirement for minerals by up to 12%

Contribution of recycling and reuse of batteries to reducing primary supply requirement for selected minerals by scenario

Secondary production from recycled minerals

Reuse in second-life batteries

Share of recycled minerals in total demand

IEA. All rights reserved.

Methods and Data | Limitations

Reporting

Inconsistent Accounting Tolling, Operations Included

System Boundaries

Copper and PM Refineries Crude Nickel Sulfate Production

*PM: Precious Metals

Research Gap | Processing capacity

Source: USGS

Results and Analysis | Geographic capacity breakdown

Non-FeNi, Non-Smelters Operations (n=42)

Results and Analysis | Timeline to capacity

Results and Analysis | Carbon neutral goal — year

800,000

Metric Tonnes of Capacity 000,000 400,000 000,000 200,000

Refinery

681,401

Intermediate

Discussion | North American excess refining

120,000

24 *North Atlantic Include Sudbury and Clydach Refineries and Sudbury, Thompson, and External Sources

Results and Analysis | Product chemistry

25

*Other: C₂H₄NiO₈ (3x), NMC (1x), NiS (1x), NiCO₃ (1x), Nickel Reclaim (1x)

Results and Analysis | Product form factor

40

*Other: Compacts (2x), Blocks (2x), Solution (1x), Cake (1x)

Results and Analysis | Processing route

Non-FeNi, Non-Smelters Operations (n=43)

*Unknown likely Hydro

Discussion | North American nickel projects

	Property	Commodities	Facilities	Output	Carbon Goal	Sequ
1	Dumont +	Ni, Co, Fe, PM	Mine	Concentrate	Yes	
2	Nickel Shaw 🙌	Ni, Cu, Co, PM	Mine	Concentrate	Yes	
3	Thierry +	Ni, Cu, PM	Mine	Concentrate	No	
4	Minago 🙌	Ni, Cu, Co, PM, Other	Mine	Concentrate	Yes	
5	Lynn Lake 🙌	Ni, Cu, Co, Pb, PM	Mine	Concentrate	No	
6	Turnagain 🙌	Ni, Co, Cu, PM	Mine	Concentrate	Yes	
7	River Valley 🙌	Ni, Cu, Co, PM	Mine	Concentrate	No	
8	Shakespeare 🙌	Ni, Cu, Co, PM	Mine	Concentrate	Yes	
9	Junior Lake 🙌	Ni, Cu, Co, PM, Other	Mine	Concentrate	No	
10	Makwa Mayville 种	Ni, Cu, Co, PM	Mine	Concentrate	No	
11	Eagle's Nest 🙌	Ni, Cu, PM	Mine	Concentrate	Yes	
12	Victoria 🙌	Ni, Cu, Co, PM	Mine	Conncentrate	Yes	
13	Crawford (*)	Ni, Fe, Co, PM	Mine	Concentrate	Yes	
14	Decar 🙌	Ni, Fe, Cr	Mine + Processing	Nickel Sulfate?	Unclear	
15	Ferguson Lake 🙌	Ni, Cu, Co, PM, Other	Mine + Processing	Refined product	No	
16	Hidden Bay 钟	U, Co, Ni	Mine	Unknown	No	
17	Kenbridge	Ni, Cu, Co, PM	Mine	Unknown	No	
18	Onaping Depth 🙌	Ni, Cu, Co, PM	Mine	Existing Process	Yes	
19	Battery Material Park 🙌	Co, Cu, Ni, Li, C	Processing	Nickel Sulfate	Yes	
20	Tamarack 	Ni, Cu, Co, PM	Mine + Processing?	Concentrate, Refined?	Yes	
21	Mesaba 틒	Ni, Cu, Co, PM	Mine	Concentrate	Yes	
22	NorthMet 	Cu, Ni, Co, PM	Mine	Concentrate	No	
23	Missouri Cobalt 筆	Co, Ni, Cu	Tailings Reprocessing	Concentrate	No	

uestration

Yes Yes No No No Yes No No No No Yes No Yes No No No No No No Yes No No No

Discussion | Carbonyl nickel refining

250,000

Carbonyl Refining Capacity Total Refining Capacity

Natural and synthetic graphite | Trade-offs between carbon footprint and supply risk of different sourcing options

IRTC 2023 – Lille

Aina Mas Fons Anish Koyamparambath Philippe Loubet Guido Sonnemann

- Context
- \circ Objectives
- Methodology
 - o GeoPolRisk
 - o LCA
- Supply chain
 - Natural graphite
 - Synthetic graphite
- $\circ\,$ Results and trade-offs
- Conclusions

The big picture

Up to **20% wt.** of the battery cell

The big picture

Objectives

- Assess the **trade-off** between carbon footprint versus supply risk of both graphite groups
- Identify the foreseeable hotspots and bottlenecks of the different sourcing options

- Assess the trade-off between carbon footprint versus supply risk of both graphite groups
- Identify the foreseeable hotspots and bottlenecks of the different sourcing options

GeoPolRisk

Supply risk of importing one resource to one economic unit for one year.

- Data available for 32 resources including fossil fuels, metals and non metals.
- Political instability indicator data for over 200 countries, regions and economic blocks (Including former countries, regions) since 2000 (Including EU).

Gemechu, Eskinder, Guido Sonnemann, and Steven Young. 2015. "Geopolitical-Related Supply Risk Assessment as a Complement to Environmental Impact Assessment: The Case of Electric Vehicles." The International Journal of Life Cycle Assessment, June. <u>https://doi.org/10.1007/s11367-015-0917-4</u>.

Santilián-Saldivar, Jair, Eskinder Gemechu, Stéphanie Muller, Jacques Villeneuve, Steven B. Young, and Guido Sonnemann. 2022. "An Improved Resource Midpoint Characterization Method for Supply Risk of Resources: Integrated Assessment of Li-Ion Batteries." The International Journal of Life Cycle Assessment, no. 0123456789. https://doi.org/10.1007/s11367-022-02027-y. Weighted average of imports to economic unit (c)

- Weighted using the political instability indicator (g_i)
- Values vary with the economic unit and year of assessment

- Weighted using the political instability indicator (g_i)
- Values vary with the economic unit and year of assessment

Koyamparambath, Anish, Jair Santillán-Saldivar, Benjamin McLellan, and Guido Sonnemann. 2022. "Supply Risk Evolution of Raw Materials for Batteries and Fossil Fuels for Selected OECD Countries (2000–2018)." Resources Policy 75 (November). https://doi.org/10.1016/j.resourpol.2021.102465.

Methodology | LCA

International Organisation for Standardization. 2006. "ISO 14044 - Environmental Management Life Cycle Assessment - Requirements and Guidelines." Geneva.

Methodology | LCA

Production of battery-grade graphite:

- Natural graphite route
- Synthetic graphite route

Functional unit | Production of **1kg** of battery-grade graphite

USGS. (2020). Mineral Commodity: natural graphite

UN Comtrade Database. (2020). 250410 | Graphite; natural in powder or in flakes. https://comtrade.un.org/data

SPG | Spherical purified graphite

European imports for calcinated petroleum coke (2020)

UN Comtrade Database. (2020). 271312 | Petroleum coke; calcinated, obtained from bituminous minerals https://comtrade.un.org/data

22

23

Battery-grade synthetic graphite | Global production (2020)

29

Conclusions

- The decarbonization of the mobility sector is around the corner | Increasing demand for battery-grade graphite
- Climate emergency | Argument to promote the production of natural graphite
- Effect on the supply of certain raw materials | Increasing supply risk for oil
- Carbon tunnel vision | Need to include and consider other impact categories
- The direct comparison is limited

Thank you for your attention!

aina.mas-fons@u-bordeaux.fr

THE REVIVAL OF THE FRENCH RARE EARTH INDUSTRY

IRTC 2023 Lille 02/15-02/16 2023

Alain ROLLAT

SEVERAL INDUSTRIAL UNITS ARE UNDER DEVELOPMENT IN EUROPE ALONG THE RE VALUE CHAIN

Mining: Sweden, Norway

CARESTER

- Separation: UK, Norway, Poland, Estonia, France
- Metal making: UK (debottlenecking)
- Magnets making: Estonia, Germany (debottlenecking), Slovenia (debolltlenecking)
- Recycling from End of Life Magnets: France, UK

CAREMAG IS A KEY PART OF THE RE EUROPEAN INDUSTRY REVIVAL

CAREMAG – RECYCLING RARE EARTHS FROM END OF LIFE MAGNETS

CAREMAG: RECYCLED RARE EARTHS ARE ACCESSIBLE FROM NOW

EoL NdFeB magnet recycling potential in the EU from selected applications (KT)

> Caremag is already buying end of Life Magnets

Size of the deposit

Source: CEPS In depth analysis, December 2022

- 5000t of EoL magnets are accessible from now. Our target is to capture 20% of that.
- It will reach 25000t in 2045 (#9000t REO) mainly due to the EVs growth

CARESTER

CAREMAG : AN INNOVATIVE PYRO-HYDROMETALLURGICAL PROCESS WITH PATENTS FILLING IN PROGRESS

Capacity: 1000t/y of EoL + 1000t/y of scraps

CAREMAG IS A KEY PART OF THE RE EUROPEAN INDUSTRY REVIVAL

- \checkmark All the market studies show the necessity of opening new RE mines.
- ✓ Most of the current RE mining projects are based on deposits containing mainly Light Rare Earths (LRE) minerals with low Heavy Rare Earths (HRE) content.
- ✓ These projects include a LRE separation unit focused on Pr and Nd purification while the HRE are usually not separated and produced as a concentrate. The reason for such a choice is economic. For most of these companies a HRE separation unit would lead to a long pay-back due to the low HRE content of their deposit.
- ✓ In the end, all these HRE concentrates will be sold as a mixed HRE to the companies having a HRE separation unit and currently only Chinese companies have these capacities
- ✓ The consequence of this situation is paradoxical. At the same time when the western companies develop their independency from China for the Pr and Nd supply, they reinforce their dependency on China for Tb and Dy supply.

Carester intends to propose to these companies a HRE Hub able to treat their HRE concentrate and give them back the pure rare earths they need, in particular Tb and Dy.

A HRE HUB SUITABLE FOR ANY TYPE OF HRE COMPOSITIONS

2 types of HRE concentrates with very different REE distributions

• HRE concentrate from LRE minerals: Monazite & Bastnasite

In Monazite and Bastnasite minerals SEG (Sm, Eu, Gd) represent more than 80% of the HRE

• HRE concentrate from HRE minerals: Xenotime & Ionic Clays

In Xenotime and Ionic clays minerals Yttrium alone represents more than 60% of the HRE

We need to design a process able to deal with these 2 types of RE composition

CARESTER

	Typical LRE deposits		Typical HRE deposits	
Country	USA	Australia	Brazil	Australia
Company	МСР	Lynas	Serra Verde	Northern Minerals
Deposit	Mountain Pass	Mount Weld Central zone	Pela Ema	Browns range
Bearing mineral	Bastnasite	Monazite	lonic ore	Xenotime
	%/HREO	%/HREO	%/HREO	%/HREO
Sm2O3	90.8%	86.1%	17.7%	9.6%
Eu2O3				
Gd2O3				
Tb4O7	3.4%	5.4%	9.0%	11.2%
Dy2O3				
Ho2O3	0.6%	0.4%	11.4%	14.5%
Er2O3				
Tm2O3				
Yb2O3				
Lu2O3				
Y2O3	5.2%	8.0%	62.0%	64.6%
A HRE HUB SUITABLE FOR ANY TYPE OF HRE COMPOSITIONS

✓ The flexible separation unit is a Carester proprietary process

✓ No waste waters are released, all the liquid effluents are valorized as NH4NO3 solution in the fertilizer market.

waste waters are released, all th

CAREMAG : A KEY MILESTONE TO BUILD A EUROPEAN ECOSYSTEM, WITH RECOGNISED INDUS

CAREMAG & THE « MAGNET VLLEY »

« As far as the future is concerned, it is not a matter of foreseeing it, but of making it possible»

Antoine de Saint-Exupéry

38

200

200

Acting for our children

UTS \$\$. €

Developing bottom-up understanding of primary copper supply under the shared socioeconomic pathways

Stephen Northey – UTS Institute for Sustainable Futures, Australia Damien Giurco – UTS Institute for Sustainable Futures, Australia Stefan Pauliuk – University of Freiburg, Germany Mohan Yellishetty – Monash University, Australia

Shared Socio-economic Pathways (SSPs)

https://tntcat.iiasa.ac.at/SspDb/

SSP 2.6 - Copper demand is expected to grow rapidly

Klose and Pauliuk (under review)

UTS

Resource efficiency strategies may reduce demand growth

Overtime cumulative primary copper demand will start to exceed identified resources

Schipper et al. (2020). Res. Cons. & Rec. 132: 28-36.

Can our annual rate of primary copper increase to meet these demand scenarios ?

2301 deposits

Known Reserves: ~640 million tonnes Known Resources: ~3,000 million tonnes

Mudd & Jowitt (2018). Economic Geology 113(6): 1235-1267.

Ť

Mining all known copper deposits simultaneously would only get you so far

UTS

Deposits with Resources ~ 50 million tonnes per year

Deposits with Reserves ~ 24 million tonnes per year

Recycling rates exceeding 90% are required to constrain all SSPs below supply limit of known deposits

UTS

Deposits with reserves may be sufficient to meet supply IF strong material efficiency strategies are implemented SSP 2.6

UTS

Okay, maybe copper supply and demand can be balanced in 2050

But what about the timing of exploration and supply?

÷

SSP 2 RCP 2.6

SSP 2 RCP 2.6

Unpublished and Preliminary. Subject to Change.

SSP 2 RCP 2.6

Unpublished and Preliminary. Subject to Change.

Conclusions

Demand scenarios for the shared socio-economic pathways (SSPs) are a thing

Known deposits can probably scale supply for a while

Long term significant exploration success will be required, maybe higher prices as well

uTS ₩

Thankyou

Stephen Northey UTS Institute for Sustainable Futures stephen.northey@uts.edu.au

Damien Giurco Stefan Pauliuk Mohan Yellishetty

